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Abstract

Entanglement is a crucial resource to process and transmit information sur-

passing the limits of what is possible in classical physics. However envi-

ronmental noise (or decoherence) puts limits on the performance quantum

states can deliver. To overcome these shortcomings, distillation offers a

protocol in which local operations on a number of states deliver a strongly

entangled state (with little noise). In the broad field of quantum optics the

continuous variables of light have been studied for over half a century. This

grants the existence of numerous mathematical and experimental tools suit-

able to explore distillation. The development of some tools for the practical

realization of such protocols constitutes the core of this research.

The first part of the thesis presents improvements to existing protocols

aimed at optimizing optical resources and enhancing success probabilities.

To this end I study new configurations of existing protocols and evaluate the

advantages of using measurement devices with higher efficiencies. The col-

laboration with The Ultra Fast Group at the University of Oxford has lead

to the first steps towards the experimental implementation of the aforemen-

tioned ideas. Many unanswered questions were met along the way: Is the

purity of these optical states sufficient for distillation? Are these measuring

devices operating in the quantum regime and if so how well? How could

one rigorously characterize an entanglement increase in a continuous vari-

ables experiment? The second part of this thesis deals with the theoretical

tools necessary to answer these questions and to develop them further ex-

perimentally. Among the answers I present new experimental entanglement

characterization tools, and new developments in detector tomography.
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1

Introduction

The thesis is organised as follows: This first chapter is a brief introduction to the liter-

ature and the context. Subsequently I introduce the motivation behind this thesis and

my contributions to the field. The next chapter (2) deals with improvements to current

entanglement distillation protocols. It can be read independently from the other chap-

ters and constitutes the first block of the thesis. Chapter 3 is a more detailed analysis of

the experimental and theoretical challenges involved in the actual implementation and

can be read independently too. Chapter 4 deals with the concept of detector tomogra-

phy. Even though this tomography is used to characterise the tools from chapter 3 it can

also be read independently. Finally some software tools I developed are included for

reference in the appendix but are not needed to understand the rest.

1.1 Entanglement: an Introduction

Since the publication of the famous paper in 1935 by Einstein Podolsky and Rosen

[EPR35] the way we picture entanglement and how we talk about it have evolved

greatly. It was described as “spooky action at a distance” and later as “statistical cor-

relations revealing non-locality” [Pop95] to have widespread acceptance from the mid-

1990’s on as a possible resource for communication and computation having its own
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1.1 Entanglement: an Introduction

unit, the “ebit”. I will briefly review its origins, uses and why distillation of entangle-

ment appears as a very natural question in the field of quantum information.

1.1.1 What is Entanglement?

Entanglement is a property which is only encountered in the realm of quantum mechan-

ics and exhibits some striking features. One way to reveal its effects involves two distant

particles having previously interacted in a specific way. When these particles are mea-

sured, the formalism seems to suggest that measuring one particle affects the properties

of the distant particle instantaneously. It is worth noting that these effects cannot be

seen in a single run experiment but become apparent in the statistics relating the results

of many measurements. In that regard the exact interpretation of this result requires a

careful examination of the many assumptions involved in the formalism [Bel87, HR07].

However, irrespective of the interpretation, the coexistence of concepts such as locality,

realism, logic or probability sets is brought into question or may even have to be aban-

doned [EPR35, Har93, Pop95, Ish97].

To give a more formal definition of entanglement we must note that two key elements

give rise to the structure of entanglement:

• First the mathematical object that describes the properties of an isolated physical

system is a ray embedded in a Hilbert space. Therefore linear combinations of

states also describe physical systems.

• Secondly the way to describe two or more particles or systems makes use of the

direct product. The states defined by linear combinations of direct products of

rays can give rise to the correlations defining entanglement.

To be more precise and general about the definition of entanglement in the bipartite case

we can refer to [Wer89]) :
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1.1 Entanglement: an Introduction

Definition 1. The state described by the density matrix ρ on HA ⊗ HB is said to be

separable iff it can be written as the convex combination:

ρAB =
N∑
i=1

piρ
i
A ⊗ ρiB, 0 ≤ pi ≤ 1,

N∑
i=1

pi = 1

or can be approximated in trace norm by the states of that form. Otherwise the state is

said to be entangled.

(Note that the multipartite generalisation of the definition is more or less straight-

forward although the concept of N-separability adds to its complexity [HHHH07]).

1.1.2 Why Use Entanglement?

The existence or not of these correlations between distant particles has been the subject

of heated debate for most of the 20th century [EPR35, Boh35, Sch35, Ein53, Bel64,

Bel87]. However, in the 1980’s a series of experiments in quantum optics confirmed

many of the properties entanglement was expected to display [CHSH69, APR81, AGR82,

ADR82, SA88]. Giving a practical use to this correlations has sparked the imagination

of numerous scientists in computation, information science and physics.

Among the notable applications of entanglement for communication we find the so

called ‘teleportation’ [BBC+93a], secret key distribution for quantum cryptography

[Eke91] or quantum dense coding [BW92]. In the field of computation various algo-

rithms have been found for which entangled states allow some computational problems

to be solved far faster than is possible using classical resources alone [Ste98, Sho97,

Sho96]. However, the exact role entanglement plays (or not) in this speed-up is still a

subject of active investigation.

Additionally the epistemological and philosophical questions involved in the transition

from classical physics to quantum physics can be elucidated as we enhance our control

of quantum systems and refine our means of interacting with them.
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1.2 Monogamy, Decoherence and Other Challenges

1.2 Monogamy, Decoherence and Other Challenges

It must be noted that the very structure of entanglement, while enabling useful correla-

tions between some particles, can also introduce unwanted ones. Entanglement between

any number of particles is generated by means of pairwise or multiple-particle interac-

tions. It should therefore be obvious that when unwanted interactions (for instance with

the environment) occur, entanglement beyond the reach of our measurement devices can

be generated. Two key concepts help us grasp the problem behind this phenomenon:

Monogamy of entanglement and decoherence.

Loosely speaking monogamy of entanglement [CKW00] makes reference to the follow-

ing: If two particles A and B share certain amount of entanglement and one becomes

entangled with a third one the pairwise entanglement betweenA andB will weaken. As

a limiting case when two particles are maximally entangled, they cannot be entangled

with a third one in that same degree of freedom. More specifically we can write the

state of these three particles and look at the entanglement between different parts of the

system. For instance, the entanglement betweenA and the pairBC can be quantified by

a certain entanglement measure E(A(BC)). This quantity then limits the entanglement

A can have with B and C taken individually. For qubits this relation can be expressed

by the inequality E(AB) + E(AC) ≤ E(A(BC)), where E() is some entanglement

measure (or originally the square of the concurrence)[CKW00].

It is often impossible to control all the interactions between a system and the envi-

ronment (air, optical fibres, atoms, radiation, etc). Therefore if our system becomes

entangled with third particles the entanglement between the two (or more) particles

that interest us will eventually decrease. Similar results hold for more particles, higher

dimensions and for certain infinite dimensional systems making it a general problem

[KW04, AI06, AI07, AI08] .
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1.2 Monogamy, Decoherence and Other Challenges

It is however not always possible to describe or have access to every particle that in-

teracts with our system and we often adopt a more coarse grained point of view. For

our quantum communication purposes, particles will need to be sent through a channel

(optical fibre or air for instance). The inevitable interaction with the particles of the

channel cannot be described in full detail but will be effectively described as a decoher-

ence process. Tracing out the channel will also reveal a state whose correlations have

‘leaked’ into the environment [NC00, Pre98]. Put differently, part of the entanglement

that the original system contained is now shared with inaccessible particles.

On top of the decoherence noisy channels introduce, the creation of entanglement can be

a noisy process in the first place. Entangled states are often the outcome of probabilistic

events and need to be described with mixed states similar to those having experienced

decoherence. These two considerations (partial accessibility and uncertainty in the state

generation) imply that usually the available states are less entangled than the pure state

description we often encounter. We can loosely say that entanglement is either difficult

to produce or is lost in inaccessible parts of the system.

To summarise, the mathematical structure of quantum mechanics reveals the interesting

and useful property of entanglement. However the correct description of experimentally

available states shows that entanglement is hard to produce, manipulate and preserve.

1.2.1 Fighting Decoherence with Distillation

As we have seen above, if we want to exploit the power pure entangled states have to

offer, we need to fight decoherence and mixedness (or lack of purity in the quantum

sense). In other words we ultimately want to have highly entangled pure states as a re-

source. Many areas in Quantum Information can help achieve this goal. Notably better

sources of particles will contribute to the solution (be it photons [MLSW08], trapped

ions [LDM+03], Nuclear Magnetic Resonance [LKC+02] or any other implementa-

tion). Isolating our qubits from the environment is obviously another interesting path.
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1.2 Monogamy, Decoherence and Other Challenges

Figure 1.1: LOCC: Local Operations and Classical Communications are the opera-
tions Alice and Bob are allowed to use in their quantum communication tasks. LOCC
precludes the coherent exchange of quantum particles between the two or more parties.

This idea has lead to clever arrangements of particles which protect the coherent infor-

mation [Kit02, FKLW01].

However, we must remember that if these particles are to travel long distances even

highly entangled pure states will degrade through a noisy channel. We may neverthe-

less choose to tame the effects of this noise with accurate and controlled local quan-

tum processes in the distant labs. These are commonly referred to as local quantum

operations (LO). Local operations are aimed at avoiding the typical long-distance de-

coherence. Additionally, standard telecom technologies allow perfect classical commu-

nication which can help coordinate the quantum operations in each lab (see fig. 1.1).

The use of these resources is commonly described under the acronym LOCC: Local

Operations and Classical Communication. Another crucial aspect of LOCC-operations

is its fundamental relationship to entanglement. LOCC-operations between two non-

entangled particles cannot create entanglement. In fact one can define classical cor-

relations between two quantum systems as those arising from LOCC-operations alone

[EJPP00, CLP01].

The compelling question is therefore: can LOCC fight decoherence or even increase
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1.2 Monogamy, Decoherence and Other Challenges

the entanglement if it is present? There is a partial affirmative answer to this question.

Distillation can achieve this but with certain restrictions. This will not be a determin-

istic process and not all states will be distillable [Ken98a, Rai99, PV07]. Purity and

entanglement-increasing LOCC-operations are generally classified depending on the

resource states and the target states. Increasing the entanglement of pure states is called

entanglement concentration. When this operation encompasses the use of mixed states

too it is called entanglement distillation. Also, purification refers to the process of in-

creasing the purity which can be quantified with measures such as Tr {ρ2} or the Von

Neumann entropy.

Entanglement Concentration A simple example introduced in 1995 will help us grasp

the spirit of distillation. The first insight leading towards distillation was that LOCC op-

erations on a state not violating any bell inequality could turn it, probabilistically, into a

state revealing non-locality [Pop95]. To understand this, consider a state of the form:

α|00〉+ β|11〉.

Without loss of generality we will restrict ourselves to the case in which α > β. Let

Alice add an ancillary qubit in the state |0〉 forming the state:

α |00〉︸︷︷︸
Alice

|0〉︸︷︷︸
Bob

+β |01〉︸︷︷︸
Alice

|1〉︸︷︷︸
Bob

and let her perform a unitary operation on her two qubits that will map:

|01〉 −→ |01〉 and |00〉 −→ β
α
|00〉+

√
1−

(
β
α

)2|10〉

returning the state:

|φ〉 = β|0〉 (|00〉+ |11〉) + (α2 − β2)|1〉|00〉.

14



1.2 Monogamy, Decoherence and Other Challenges

Now with probability β2 measuring the ancillary state will give the result “0”. If this

result is obtained the other two particles will be in a maximally entangled state whereas

obtaining “1” will return the product state |00〉. Using LO (ancilla + local unitary)

and CC (i.e. communicating the success or failure of the measurement) to increase

entanglement was introduced by Bennett et al. [BBPS96] as well as Gisin [Gis96] who

described it as “hidden quantum non-locality revealed by local filters”. A single pure

state probabilistic distillation of entanglement following that scheme was done in 2001

[KBLSG01] . The last 12 years have of course seen impressive advances beyond the

pure, single copy, bipartite and probabilistic distillation that was just presented. Dealing

with mixed states, qudits, infinite dimensions or multipartite settings have been some of

the issues addressed. A recurring issue concerns the speed at which one can distill these

pure entangled states, the resources involved and the trade-off between probabilities and

yield (be it maximally entangled states or other target states).

1.2.2 Distillation in Finite Dimensional Hilbert Spaces

Although the first appearance of entanglement [EPR35] was in continuous variables, the

Bohm-experiment version of the EPR paradox did get more attention due to its simplic-

ity. Two level quantum systems indeed provide a simple system to work with. Photon

polarization, two level atoms or spin-1
2

particles are ideal systems for the study of entan-

glement. The collaboration of information scientists, computer scientists and physicists

has also brought a lot of attention towards systems containing ‘qubits’ due to the analo-

gies with the classical ‘bits’. Such systems also suffer the effects of decoherence which

hinder the realisation of many quantum information tasks. Distillation of entanglement

is therefore a crucial question in these systems.

Bipartite Entanglement Distillation: This example is one of the most frequently stud-

ied due to its obvious consequences for quantum information theory. Sharing, encoding

or sending a message using ‘qubits’ between two distant parties A and B are basic com-

munication tasks. Furthermore some discoveries about its mathematical structure under
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1.2 Monogamy, Decoherence and Other Challenges

LOCC make it a fertile ground for investigation (for example its relation to majorization

[LP01]) . Let us then study some of the generalisations beyond the simple example of

concentration presented above.

Bennett et al.

The BBPSSW recurrence protocol [BBP+96] is a first well defined contribution to

distillation aimed at facilitating teleportation. It works for 2 ⊗ 2 states with fidelity

F = 〈φ+|ρ|φ+〉 > 1/2. The resource is N copies of a state ρ. Both parties perform

U ⊗ U∗ twirling to get N copies of a 2⊗ 2 isotropic state ρF and then locally Alice and

Bob perform two pairs of XOR operations (also known as CNOT gates):

UXOR|x〉|y〉 = |x〉|x+ y〉 (1.1)

Where the sum in (1.1) is performed modulo 2. The first particle will be called source

and the second target. To complete the distillation they take pairs of ρF states. Source

particles are taken from the first of the two pairs and target particles from the second

pair. This leads to many copies of

ρ′ = UXORA ⊗ UXORB(ρF ⊗ ρF ) U †XORA ⊗ U
†
XORB

For each of these four qubit states Alice and bob measure target qubits locally in the

computational basis. If the results agree they keep the remaining pair of source particles

and “twirl” it. Otherwise they discard it. The surviving pairs will have a new fidelity of:

F ′(F ) =
F 2 + 1

9
(1− F )2

F 2 + 2
3
F (1− F ) + 5

9
(1− F )2

. (1.2)

F ′(F ) is continuous, F ′(F ) > F for F > 1/2 and F ′(1) = 1. Therefore one may reach

arbitrarily high fidelity if the procedure is iterated.
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1.2 Monogamy, Decoherence and Other Challenges

Efficiency

The problem is that the success probability goes to zero in the limit F → 1 with the

above protocol. In fact it can be shown that this is the case for almost all mixed states

[Ken98b]. Nevertheless if F is high enough to ensure that S < 1 where S is the Von

Neumann entropy, then the hashing protocol [BDSW96] gives asymptotically nonzero

distillation rate providing (1 − S)N maximally entangled pairs. Following these same

ideas another protocol was presented and applied to Quantum Privacy Amplification.

Quantum Privacy Amplification (QPA)

This method aimed at increasing the security of quantum cryptography over noisy chan-

nels (in the entanglement based scheme) appears in [DEJ+96]. Based on the ideas from

the distillation protocols above it improves the rates and applies it to key distribution

over noisy channels.

Requirements

Let us assume that pairs are generated in the state |φ+〉 and then become mixed when

distributed over a noisy channel. The basis to describe the state of our pairs will be the

Bell state basis {|φ+〉, |ψ−〉, |ψ+〉, |φ−〉}. In it, the density operator will by assumption

have diagonal elements {a, b, c, d} following the notation in [BEE00]. Therefore, the

first diagonal element will be the fidelity: a = 〈φ+|ρ|φ+〉. The purpose of QPA will

be to achieve a = 1 and therefore b = c = d = 0. The off diagonal elements do not

contribute on average to the QPA algorithm so one does not need to specify them. The

details of the procedure are similar to the one presented above by Bennett et al. Pairs of

states are considered, UA and UB rotations are applied on both pairs at each respective

side followed by a Controlled-NOT operation on both copies. Afterwards the target pair

is measured and coinciding outcomes are kept.

17



1.2 Monogamy, Decoherence and Other Challenges

Efficiency

The QPA procedure looses at least one half of the particles (the ones used as targets) at

each iteration. In spite of this, it is about 1000 times more efficient than the proposal in

[BBP+96] when a is close to 1/2. It has also been proved [C.98] analytically that the

target point a = 1, b = 0, c = 0, d = 0 is a global attractor for a > 1
2

. Nevertheless it

does not guarantee the security of the cryptographic protocol because of finite detection

efficiencies.

Some general statements

When it is possible for Alice and Bob to transform one or more copies of the resource

state ρ into at least one copy of |φ+〉 with high accuracy using LOCC, ρ is loosely

said to be distillable. The question “are all entangled states distillable?” had, as was

mentioned, a negative answer. Indeed one can see [HHH97] that for example entangle-

ment of n ⊗ m positive partial transpose (PPT) states cannot be distilled and they are

nevertheless entangled. This leads to the concept of ‘free’ and ‘bound’ entanglement.

The former being distillable and the latter not. All currently known examples of bound

entangled states have a positive semi definite partial transpose of the density operator.

Every PPT state is known to be undistillable. The converse is a central open question.

Another concept arises when trying to optimise this process. The concept of distill-

able entanglement of a state ρ is intuitively the maximum over all allowable protocols

of the expected rate at which “good” EPR pairs can be obtained from a sequence of

identical states. A rigorous formulation of it was given by E.M. Rains [Rai99]. To ease

the formulation of a rigorous and computable definition it is useful to consider a more

powerful set of operations than LOCC, namely operations preserving the positivity of

the partial transpose (PPT operations). This set is easier to describe but PPT operations

allow more general operations. For instance, to map a product state onto a bound en-
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1.2 Monogamy, Decoherence and Other Challenges

tangled state and ensure the distillability of any NPT (negative partial transposed) state

[EVWW01]. Nevertheless It is still an open question if NPT bound entangled states

exist with respect to LOCC. The distillable entanglement of a bipartite state ρ under

LOCC can be expressed as [APE03]:

Definition 2. The optimal rate of maximally entangled states that can be distilled from

ρ, by LOCC, in the asymptotic limit is:

ELOCC
D (ρ) = sup

{Kn}

{
lim
n→∞

inf
logKn

n

}
such that

lim
n→∞

(
inf

Λ∈LOCC
||Λ(ρ⊗n)− Φ(Kn)||1

)
= 0

Where Φ(K) = 1
K

∑K
i=1

∑K
j=1 |i, i〉〈j, j| is the maximally entangled state in K di-

mensions, and the supremum is taken over all possible sequences of integers {Kn}.

The distillable entanglement for example provides a bound to the optimal rate any

protocol of the BBPSSW kind may achieve [BBP+96]. However it remains a definition

of limited practical applications due to the difficult optimisations it entails.

Now the next obvious question is which states are distillable. If ρ is a pure entangled

state, distillation is always possible [BBPS96]. If ρ has a small amount of entanglement,

sufficiently many copies of it allow copies of |φ+〉 to be distilled with high accuracy.

Furthermore, if ρ is a mixed state of exactly two qubits, if it is entangled it is distillable

[BBP+96, HHH97]. In a more general fashion a necessary and sufficient condition for

a state to be distillable can be expressed as [HH01]:

Proposition 1. A bipartite state ρ on HAB = HA ⊗HB is distillable iff for some two-

dimensional projectors P, Q and for some number N, the “two-qubit-like” state

ρ′N(ρ) =
P ⊗Qρ⊗NP ⊗Q

Tr [P ⊗Qρ⊗NP ⊗Q]

is entangled.
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In spite of the above proposition there is no effective known procedure to determine

whether a given state is distillable or not.

A further subtlety was introduced when enquiring precisely how many copies are re-

quired for a given distillation [Wat04]. The concept of n-distillable state was intro-

duced. A state is said to be n-distillable if there exists an LOCC protocol that allows

Alice and Bob to convert n copies of ρ to a shared pair of qubits that is entangled. Note

that n-distillability does not require the n copies of ρ to become a maximally entan-

gled pair, but only the conversion to an entangled pair. Therefore ρ is distillable iff ρ

is n-distillable for some n. Indeed once we have grouped our states in groups of n and

distilled entangled pairs, we can use these in a usual protocol like [HHH97] to distill

singlets. Actually for pure and mixed states on a single shared pair of qubits distillability

and 1-distillability are equivalent. An interesting result from [Wat04] is that

Proposition 2. For any choice of integers d ≥ 3 and n ≥ 1, there exists a d2 ⊗ d2

bipartite mixed quantum state that is distillable but not n-distillable.

This means that entanglement distillation is nonlinear with respect to the number

of copies used in the distillation process. There are instances of states ρ where 106

copies do not suffice for a single shared pair of non-separable qubits to be created. That

distillability is in general not equivalent to n-distillability has therefore important con-

sequences.

For a rigorous treatment of distillability and bound entanglement see [Rai99]. For a

review containing the first ideas see [HH01, VP98]. For a thorough and rigorous treat-

ment see [DW05].

Multipartite entanglement distillation

Various proposals have been made to distill multipartite entanglement [MPP+98, ADB05,

DAB03]. This can lead to the distillation of Greenberger-Horne-Zeilinger (GHZ) states
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[GHSZ90], that is states of the form:

|φ±〉 =
1√
2

(|00...0〉+ |11...1〉) .

These and other truly entangled multipartite states are a very interesting resource for

quantum communication in networks. Indeed communication networks usually involve

more than two parties so this will be essential for scalable quantum information process-

ing. Multipartite entanglement is more difficult to quantify in high dimensions but the

creation of multipartite entangled particles is already an experimental reality for pho-

tons [BPD+99, LZG+07] molecules [LKZ+98], spins in diamonds [NMR+08] or ions

[HHR+05].

Pair assisted distillation

Another multipartite distillation approach involves purifying entangled pairs first and

building multipartite entanglement afterwards using the methods from teleportation

[BBC+93b, ZHWidZ97, BVK98]. Since we know how to purify two particles we can

do that first and then entangle them successively. Let us study the case for tripartite

distillation.

Description

The procedure [ZHWidZ97, ZHWidZ97] consists of four main steps:

1. Divide the original ensemble in two equal sub-ensembles.

2. Bob and Claire perform projections of particles onto:

|±〉 =
1√
2

(|0〉 ± |1〉)
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Bob does it with particles from one sub-ensemble and Claire with particles of the

other. When they obtain a successful projection onto |−〉 Alice performs a σz on

her particles, otherwise she does nothing.

3. A-B on one side and A-C on the other then perform a standard two particle pu-

rification process. This results in two maximally entangled ensembles of pairs of

particles, shared between Alice and Bob and between Alice and Claire.

4. To obtain a single GHZ state out of two maximally entangled pairs shared be-

tween A-B and A-C she chooses one entangled pair from each sub-ensemble.

She performs a CNOT operation on her two particles and projects the target parti-

cle onto |0〉 or |1〉. A successful projection onto |1〉 is followed by a σz operation

on Claire’s particle, and otherwise nothing is done.

Requirements

Since two particle entanglement distillation requires f > 1/2 if we do not know the

initial state this will set a limit here too. Otherwise, if we have additional information, a

state not fulfilling the above condition could be purified [HHH97]. For more than three

particles the criteria are more difficult and we have to turn our attention to schemes that

directly distill multipartite entanglement.

Direct distillation

For two particles the singlet state is invariant under any bilateral rotation and this plays

an important role in the aforementioned purification schemes. For three or more par-

ticles there is not always a known maximally entangled state which is invariant under

multi-lateral rotations. This makes it difficult to convert an arbitrary state into a Werner

state. In the absence of a maximally entangled state invariant under random bilateral

rotations we may introduce a Werner-type state [BEE00]:

ρW = p|φ+〉〈φ+|+ 1− p
2N

I (1.3)
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This state could describe the attempt to distribute a state |φ+〉 to many parties through a

noisy channel. The fidelity of the transmitted state would be evaluated as:

f = 〈φ+|ρW |φ+〉 (1.4)

resulting therefore in the expression f = p+ (1−p)
2N

for Werner-type states.

A protocol going beyond the pairwise distillation was proposed in 1998 [MPP+98] and

was called P1+P2. It can purify a Werner-type state of any number of particles, provided

the fidelity of the initial mixed state is above a certain threshold.

Description

The protocol consists of Alice and Bob performing each on their side iterations of the

operations P1 followed by P2. P1 is a local CNOT and a measurement M1. M1 keeps

the control qubits if an even number of target qubits are measured in the state |1〉. Oth-

erwise the control qubits are discarded.

P2 is a local CNOT operation and a measurement M2 in which the control qubits are

kept if all target qubits are found to be in the same state (otherwise they are discarded).

Therefore when purifying 3 particles only |000〉 and |111〉 are kept.

For instance 4 states can be taken by Bob. P1 is done on one pair and P1 is done

on another pair. Two states come out of each P1 operation. Two states are afterwards

fed to the P2 operation.

Achievements

This purification is not restricted to Werner-states. Other states can be purified by P1 or

P2 alone. For example if the initial state has no weight on |φ−〉 and the other states have
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equal weights (or even if other states have zero weight) then P2 alone can purify to |φ+〉

1.2.3 Distillation in Infinite Dimensional Hilbert Spaces

A lot of progress has been made studying qubits or low dimensional systems. Qubits,

due to the low dimensionality and symmetries in two dimension offer many opportuni-

ties to solve quantum information problems. The maintained efforts in the experimental

community to isolate and control two level systems have also contributed to the progress

in the area. However both technical and mathematical limitations exist which make it

worthwhile exploring beyond qubits or qutrits.

To begin with, the infinite dimensional stage offers new and as yet unexplored possi-

bilities. The rich structure of the infinite Hilbert space makes its analysis more complex

but also could unveil new insights, protocols and technologies. For instance one can

find highly entangled states very close (in trace norm) to non-entangled ones [ESP02b].

Another characteristic is that very few states are non-distillable [HCL01] or that one

can in principle achieve arbitrarily high entanglement. All these features make it an

exciting arena. However, one of the main aspects that encourages the use of infinite

dimensional systems is the available expertise in quantum optics. The quadrature am-

plitudes of the quantised electromagnetic field provide the continuous variables, which

observe commutation relations analogous to those of position (X) and momentum (P )

in the quantum harmonic oscillator.

Most quantum communication protocols require some form of preparation, unitary ma-

nipulation and efficient measurement. It turns out that standard optical tools such as

non-linear crystals, beam splitters, phase shifters or phase-quadrature measurements

fulfill all these requirements. Moreover the breadth of possible continuous variables

(CV) implementations makes its exploration very encouraging. Among the physical

systems where CV are studied we can count phonons, photons, polarisation of intense

beams, cold atoms, Josephson Junction Circuits, Bose-Einstein condensates or nano-
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mechanical resonators. In many of these systems standard techniques such as Quan-

tum Key Distribution [GG02, Ral03], teleportation [Vai94, DBL+03], quantum erasing

[AGL+04] or Universal Quantum Computing [SBd02, BL05] have been ported from

the discrete variables setting. Decoherence obviously affects continuous variables too

[SPID05] and so the distillation concepts must be adapted to this setting.

Bipartite entanglement distillation

In the distant lab paradigm, the case of two parties is the simplest. The infinite dimen-

sional Hilbert space however introduces many difficulties. For instance on a bi-partite

infinite-dimensional Hilbert space one can find arbitrarily close states (in trace-norm)

whose difference in entropy of entanglement is infinite [ESP02b]. In that sense, many

of the definitions from the finite dimensional setup need to be carefully revised or rede-

fined. Since many problems and open questions remain unsolved in finite dimensional

spaces it would seem that little can be said about the complex infinite dimensional case.

Nevertheless some subsets of states defined in the continuous variable setting prove

to be easily described. A notable example are Gaussian states and their manipulation

through Gaussian operations. Gaussian states have various advantages since they have

a simple mathematical description, are easily generated and standard optical tools can

apply Gaussian operations to them.

Gaussian States in CV

Since Gaussian states can be described by a small number of parameters (as opposed to

an infinite number of parameters for a general CV state), and due to their importance

in linear optics they play a special role in the field of distillation in infinite dimensions.

Let us review some of their properties.

We can define some position and momentum operators (for instance representing the po-

sition and momentum of a harmonic oscillator or the quadratures of an electromagnetic

field) as a linear combination of creation and annihilation operators: X̂ =
√

1
2
(â+ â†),
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P̂ = −i
√

1
2
(â− â†). These operators will then obey the commutation relation [X̂, P̂ ] =

i. Let us then define the Weyl Operator as:

W (X,P ) = exp
[
i(XP̂ − PX̂)

]
(1.5)

where X,P are real valued variables. For entangled states, and therefore for states with

with more than one mode, R̂ = (X̂1, P̂1, ..., X̂n, P̂n) and the commutation relations can

be generalised to:

[R̂j, R̂k] = iΣj,k (1.6)

where Σ is the symplectic matrix,

Σ =
n⊕
i=1

 0 1

−1 0

 . (1.7)

In this case too the Weyl operator can be generalised to

Ŵξ = exp
[
i ξTΣR̂

]
(1.8)

where we have employed the symplectic product, ξTΣR̂ between the vector of real

valued variables ξ and the vector of operators R̂.

We will say that the state ρ is Gaussian when its characteristic function

χρ(ξ) = Tr
{
ρŴξ

}
. (1.9)

is Gaussian in the variables ξ [SSM87, AMS97]. This means that the characteristic

function χρ(ξ) can be cast in the form:

χρ = exp[−1

4
ξTΣΓΣTξ + idTΣξ] . (1.10)

The 2n× 2n matrix Γ is called the covariance matrix and d is the displacement vector.

The displacement vector gives the coordinates of the centre of the Gaussian in phase-

space, and the covariance matrix contains the variances and co-variances. The first and
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second moments {d,Γ} fully characterize Gaussian states and therein lies the simplicity

of their description.

To make things more interesting, many states currently produced in standard quan-

tum optics labs are Gaussian. For instance thermal states, coherent (Glauber) states,

or squeezed states [LK87]. More interesting yet is the fact that Gaussian operations

(those mapping Gaussian states onto Gaussian states) can be just as easily described

[EP03, ADMS95]. These operations can be implemented using phase shifters, beam

splitters, squeezers and homodyne detection; again standard tools in the linear optics

experimental scene.

What Gaussian states will not do

An optimistic hope before 2002 was that distillation could be done using Gaussian states

and Gaussian operations. However it was shown [ESP02a, Fcv02, GIC02] not to be true.

More precisely distilling Gaussian states with Gaussian local operations and classical

communication (GLOCC) is impossible. It was later shown that the more general set

of non-Gaussian operations allows for distillation of Gaussian states [GDCZ01]. A

number of protocols that use this alternative have been put forward. All of them require

some non-Gaussian element. Either using non-Gaussian states, non-linear interactions

or non-Gaussian measurements. I will outline different proposals presenting the ideas

and methods involved.

CV Entanglement swapping and entanglement distillation

An early proposal from 1999 [PBP00] noted that purification is always possible if the

CV entangled states are projected onto the two levels of the Schmidt basis with the

largest Schmidt coefficients. Afterwards one can perform a standard discrete distilla-

tion towards two level states with possibly higher entanglement than the original ones.

However, an approach producing CV entangled states was also presented beyond the

discrete case. A procedure to distill superpositions of coherent states (called cat-states)
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was introduced in [PBP00] inspired by entanglement swapping. The key idea was to

substitute the Bell state measurement by a reverse entangling operation accompanied

by a projective measurement on the two particles. For certain parameters of the initial

cat-states distillation was proved to be possible.

These continuous variable macroscopic systems are very interesting systems for dis-

tillation. Systems like Bose-Einstein condensates (BEC) or coherent light states are

optimal candidates. Further research in the linear optics domain using cat states was

developed in 2001 [JK02b]. In this context quasi Bell-states are:

|Φ±〉ab = N± (|α〉a|α〉b ± | − α〉a| − α〉b) (1.11)

|Ψ±〉ab = N± (|α〉a| − α〉b ± | − α〉a|α〉b) . (1.12)

Here |α〉 is a one mode coherent state of light and their overlap will decrease with the

distance as:

〈Ψ+|Φ+〉 =
1

cosh 2|α|2
.

An interesting property is that quasi-Bell states can be unambiguously discriminated

using only linear elements like beam splitters and homodyning. The purification aims

at purifying states like:

ρab = F |Φ−〉〈Φ−|+ (1− F )|Ψ−〉〈Ψ−|

where the fidelity F is defined as 〈Φ−|ρab|Φ−〉. In the protocol two copies of ρab are

taken and modes a,a′ are mixed in a beam splitter on Alice’s side and b, b′ on Bob’s

side. After the beam splitter, each party performs measurements on the out-coming

branches testing if a and a′ (b and b′) are in the same state by means of a BS and two

detectors. In principle a photon parity measurement can reveal which quasi-Bell state

was obtained. Practical implementations however suffer a high sensitivity to photon loss

given that a single photon lost will change the parity [JK02a]. However, assuming this
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is overcome, with certain probability the states are kept and the new fidelity becomes:

F ′ =
F 2

F 2 + (1− F )2

giving an increase as long as F > 1/2. The probabilities involved can be quite high

and for |α| � 1 they can be 1/8 ≤ Psucc ≤ 1/4. The use of linear optics and the high

probabilities make it a promising approach.

Entanglement distillation in continuous variables using non-linearities

To overcome the no-go theorems found in [ESP02a, Fcv02, GIC02] another idea is to

make the states interact with non-linear media. The problem is often that the size of the

non-linearities reduce the probability of the distillation to impractical levels.

Protocols

Two protocols were published in [FMF03] in 2003. They attempt to distill two-mode

squeezed vacuum states of the form:

|ψq〉 =
√

1− q2

∞∑
n=0

qn|n, n〉.

The first scheme is based on the dispersive interaction of a two level atom with the mi-

crowave cavity field together with atomic state detection. The second scheme makes use

of a cross Kerr interaction, coherent states, homodyne measurements and linear optics.

Description

The mechanism behind these schemes involves an ancillary system. The ancilla ex-

periences a phase shift dependent on the number of photons on one mode of the shared

state. This phase modulation is then converted into amplitude modulation via interfer-

ence which allows to control the amplitude of the Schmidt coefficients. This is a proba-
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bilistic method which relies on the result of the measurement on the ancillary state. This

result will tell us whether the distillation succeeded or not. Recent developments have

refined this techniques but non-linearities are still too small for practical applications

[MK06, MK07].

Entanglement distillation in continuous variables by means of linear optics and

light measurements.

This idea was introduced in [OKW00] as a method to increase teleportation fidelity

through a photon-number measurement. The entanglement increase was however lim-

ited by the detector inefficiencies and could not improve much beyond the subtraction.

A more general scheme introduced the non-Gaussian character of the procedure in the

resource states [BESP03, EBSP04]. This last protocol was iterative and therefore one

could increase the entanglement beyond the photon subtraction. It was then the first

feasible protocol for distillation of entanglement in continuous variables that used ex-

clusively linear optics and non-number resolving photo-detection.

Figure 1.2: borrowed from [BESP03], Diagram showing one iteration of the linear op-
tics distillation protocol for continuous variables. The tensor product ρ⊗ρ distinguishes
the upper and lower branch, and the product |n〉 � |m〉 the left and right modes.

One step of the iterative procedure from the [BESP03, EBSP04] distillation protocol

is depicted above. Two copies ρ ⊗ ρ (upper and lower copies) of two mode states are

mixed at the beam splitters (BSs). This is followed by an avalanche photo-diode (APD)

measurement on the two upper modes. A successful step of the protocol occurs when

zero photons are detected, and the out-coming modes are then kept. One such step of

the protocol can be described as taking ρ(i) to ρ(i+1) by means of:
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ρ(i+1) = 〈0|c1〈0|d1(U � U)(ρ(i) ⊗ ρ(i))(U � U)†|0〉c1|0〉d1

where the unitary operations U describe the action of the BS. Another version of it

[EPB+07] uses the more efficient Homodyne Detection instead of vacuum projections.

This setup can be equivalent but is more complex to analyse in its full generality as

we will see in section 2.6. It has been shown that each starting state ρ(0) needs to be

non-Gaussian if ρ(N) is to have an entanglement greater than the one of the original

state. These non-Gaussian resource states ρ(0) can be obtained for example using APD

detectors and linear optics in a photon subtraction scheme.

It has been shown in [EBSP04] that non-Gaussian ρ(0)’s lead to enhanced entanglement

and purity after an arbitrary number of iterations of the protocol. Note that that mixed

input states can converge to pure Gaussian ones. This has been shown to be possible

for mixed and pure states and for current APD detection efficiencies. Furthermore the

family of states leading to this increase has been characterised. These states converge

towards a Gaussian state after a few iterations.

Therefore, once the necessary non-Gaussian states are obtained the distillation pro-

cedure mixes them to obtain a single state with higher purity and entanglement. The

lowest probabilities involved in the problem are found in the ‘Degaussification’, or

preparation of the resource states [BESP03]. These low probabilities make it hard to

scale the procedure to distill many copies. Additionally in that protocol the resources

scale exponentially with the number of steps of distillation. I will present and study

these problems in chapter 2.

Multipartite entanglement distillation

This idea is promising since the CV states can be easy to manipulate with linear op-

tics and easy to distribute. Monogamy of entanglement in this case introduces different

limitations since maximally entangled states are not limited to have 1 unit of entangle-
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ment but can achieve arbitrarily high values both in the bipartite and multipartite case

[AEI07, AI07].

Distillation in a CV multipartite network

This idea has barely been developed. Nevertheless a distillation in a CV quantum tele-

portation network has been proposed [vB00]. The basic idea is that a single mode

squeezed state is sufficient to allow quantum teleportation between any two of N parties

with the help of all other parties. The assistance of the other N-2 parties relies only on

LOCC. Because of these N-2 measurements, bipartite entangled states are distilled from

the initial N-partite entanglement.

1.2.4 Alternatives

We could also ask if there are alternatives to quantum entanglement distillation that

overcome the difficulty of not having maximally entangled states. Indeed, in contin-

uous variables, it has been shown that it is possible to distill a secure secret key with

Gaussian operations on Gaussian states. For example [IVAC04] shows that the trans-

mission of Gaussian-modulated coherent states and homodyne detection is equivalent to

an entanglement purification protocol using CSS error correcting codes [CS96, Ste96]

followed by key extraction. Also in [NBC+04] it is shown that it is possible to distill a

secure key (under certain assumptions) from sufficiently entangled Gaussian states with

non-positive partial transposition. This process does not require distillation and makes

use of Gaussian states and Gaussian operations alone. Other novel ideas include using

the effect of the environment to enhance entanglement [GMN06], or converting stabi-

lizer codes to distillation protocols [Mat02].

As we have seen, many new ideas are being developed with the Gaussian state CV

formalism trying to improve probabilities, use of resources and scalability of the pro-

tocols. As it stands it is a challenging area full of theoretical and experimental open

questions.
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1.3 Practical Quantum Optics CV Distillation

Our focus will be on implementations of CV distillation that try to use linear optics

and photo-detection as the main resources. Part of the reason is that these resources are

readily available today. Photons with CV entanglement were generated 20 years ago

using squeezed states [WXK87]. However, distillation from these sources remains up

to this day an experimental challenge. Some of the reasons involve not having pure

enough states or not having them at sufficiently high rates. Other reasons have to do

with low probabilities or with the complexity of the setups. On a different arena, reveal-

ing entanglement increase requires one to measure the entanglement before and after

the distillation procedure. Finding simple and practical ways to determine this CV en-

tanglement rigorously has been part of the problem too. I will explain how to use some

mathematical tools to evaluate this entanglement precisely in chapter 3.

1.3.1 Photon Subtraction and Procrustean Distillation

Figure 1.3: Diagram of a photon subtraction setup. A quantum states goes through a
beam splitter (meeting the vacuum at the other port). A successful subtraction occurs
when a photon is measured in one of the ports. This non-Gaussian operation can create
non-Gaussian states.

As was discussed earlier, distillation with the standard linear optics (and thus with

Gaussian operations) requires non-Gaussian states. Generating non-classical non-Gaussian

states is an active and challenging field in quantum optics with promising applications
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to quantum information. One simple way to generate non-Gaussian states involves sub-

tracting a photon from a Gaussian state as shown in Fig C.1. Great progress has been

made generating cat states, kittens and photon subtracted states [OP05b, NNNH+06,

AOBG07, OTBLG06, ODTBG07]. Other non-Gaussian states are NooN states (of the

form |φ〉 ∼ |N0〉 + |0N〉) [SOG06, EHKB04, MLS04, WPA+03], close approxima-

tions to Fock states [BAS+06, LO05, qGlFzX03, ROW+07, OTBG06], or photon-added

states [AZ04].

In spite of all this progress one crucial proof of principle experiment remains elusive:

demonstrating an increase of CV entanglement solely with LOCC. My calculations in

chapter 3 elucidate the challenges and opportunities in this area.

Another crucial aspect that requires careful examination is the adequate characteri-

sation of entanglement. Experimental data can reveal strong correlations in quantum

states and not imply any entanglement [AP06, GRW07]. The purity of the states and

the relationships between the measured observables must be studied carefully in these

cases. Of course, a full tomographic reconstruction of the density matrix can un-

veil the available entanglement. However, even avoiding the arduous task of com-

plete tomography, one can construct rigorous statements about the entanglement present

from partial measurement on the state. The use of quantitative entanglement witnesses

[EBA07, AP06, GRW08] is a tool very well suited for such situations and I will show

how it is applied to specific examples.

1.3.2 CV Experimental and Theoretical Tools in Quantum Optics

The complexity in the recent quantum optics experiments generating non-Gaussian

states is all too often ignored or approximated. However studying some of its ele-

ments in greater detail can lead to improved performance and understanding. The full

description of the down-converted states in all their degrees of freedom (frequency,

polarization, photon-number, angular-momentum, etc) is one example. Another exam-

34



1.3 Practical Quantum Optics CV Distillation

ple relates to the detectors and processes used to manipulate, measure and prepare the

states. Photo-detection has been acquiring increasing complexity. In the last decade ap-

paratuses such as single-carbon-nanotube detectors [FMM+03], charge integration pho-

ton detectors (CIPD) [SWM+04], Visible Light Photon Counters (VLPC) [KTYH99],

quantum dot arrays [SOF+00], superconducting edge or picosecond sensors[MNMS03,

GOC+01] or time multiplexing detectors [ASS+03a, ASS+03b] have made their appear-

ance. Understanding in full detail the physical processes that occur in such detectors is

of course out of our reach and we must resort to partial calibrations. Yet we rely on

these detectors for state preparation and state tomography. I will present the first results

attempting a more rigorous characterisation of detectors through detector tomography

[LSS99, LFCR+08].
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Continuous Variable Distillation of En-

tanglement with Linear Optics

This second chapter builds upon the ideas presented by Browne et al. between 2003

and 2005 [BESP03, EBSP04, Bro05]. It analyses the inherent limitations of those op-

tical CV distillation protocols and introduces modifications geared towards making the

protocols less resource consuming and more efficient.

2.1 Motivation

The practical implementations of entanglement distillation in discrete finite Hilbert

spaces often run into crucial limitations. Proof-of-principle experiments have been per-

formed in optics [KBLSG01, ZYC+03, YKOI03] but they require single photons or

photon number resolving counters which are either difficult to produce or expensive.

Furthermore current experiments require the destruction of the state in order to prove

the distillation was successful (making any iteration impossible). Proposals without

post-selection exist (for 2-dimensional systems) [XbH03, HK07] but are yet to be im-

plemented. For more details concerning the problems detector efficiency, mode match-

ing, post-selection or bandwidth impose on distillation see, for example, Rohde et. al,
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[RRM06].

It is in this context that we turn our attention to entanglement distillation in continu-

ous degrees of freedom by means of linear optics (Gaussian operations). This proposal

has seen an increasing experimental interest [EPB+07, FMF03] due to major experi-

mental improvements in both linear optics and the detection of light. After presenting

the scheme from [BESP03, EBSP04] I will identify the problems involved in a real-

istic implementation. I will evaluate the success probabilities for distillation and the

resources needed. In an attempt to improve it, I will introduce my variations on the pro-

tocol to obtain a deeper insight. This will raise different questions answered in further

chapters.

2.2 The (ρ(i) , ρ(i)) Protocol

We will call the protocol from Browne et al. [BESP03] the (ρ(i) , ρ(i)) protocol. The

motivation behind this notation will be clarified later. We will also refer to it as the

‘Gaussifier’ or ‘Gaussification protocol’ since states converge towards Gaussian states

when fed into the protocol.

2.2.1 Brief Description

To picture the whole distillation process we can first imagine that the two parties, say

Alice and Bob, have 2N -copies of a bipartite state. They also have lots of beam-splitters

(BS) and avalanche photo-diode (APD) detectors. Now they group those bipartite states

in pairs, say ρAB ⊗ ρAB. They will use BS and APD-s to operate on each of the 2N−1

pairs. If the procedure is successful (and classical communication will inform Alice

and Bob of it) each pair will generate a single bipartite state ρAB ⊗ ρAB → σAB. The

2N−1 states left will be grouped in 2N−2 pairs. Each pair will be acted on with the same

configuration of BS, APD and classical communication (CC) as before. If they are all

successful, we will now have 2N−3 pairs and so on until we have a single state left.
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2.2 The (ρ(i) , ρ(i)) Protocol

Figure 2.1: borrowed from [BESP03], The tensor product ρ⊗ρ distinguishes the upper
and lower branch, and the product |n〉 � |m〉 the left and right modes. The measured
modes will be a2 and b2, and the ones transmitted to the next stage will be a1 and b1.

One step of the iterative procedure from the distillation protocol is depicted in Fig 2.1.

Two copies ρ ⊗ ρ (upper and lower copies) of two mode states (modes a and b) are

mixed at a pair of beam splitters (BSs). This is followed by an avalanche photo-diode

(APD) measurement on the two upper modes. A successful step of the protocol occurs

when zero photons are detected (no click event). In that case the out-coming modes are

kept. One such step of the protocol can be described as taking two copies of ρ(i) to a

single copy of ρ(i+1) by means of:

ρ(i+1) = 〈0|a2〈0|b2(U � U)(ρ(i) ⊗ ρ(i))(U � U)†|0〉a2|0〉b2 (2.1)

where the unitary operations U describe the action of the BS. Note that the symbol

� indicates a tensor product between left and right, whereas the symbol ⊗ is a tensor

product between the upper and lower branches of Fig 2.1.

The procedure can be iterated as shown in Fig. 2.2. That way, after successfully ob-

taining two copies of ρ(i+1), we can map them in turn to a copy of ρ(i+2). The way states

are combined in the ( ρ(i) , ρ(i)) protocol can be schematically represented by figure 2.3.

Note that if one of the steps is unsuccessful, the procedure has to be started from ρ(0)

again.

One of the results from the protocol is that Gaussian states are a fixed point of the

map in Eq. 2.1. In other words, and as expected from the use of GLOCC, the pro-
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2.2 The (ρ(i) , ρ(i)) Protocol

Figure 2.2: This diagram shows two steps of the Gaussification (or distillation) proce-
dure from [BESP03]. After the first step occurs in the gray boxes, the successful states
are mixed in the outer beam-splitters, detected, and the remaining modes become the
output (arrows). We can say that four copies of ρ(0)

AB are mapped onto two copies of
ρ

(1)
AB which are in turn mapped to a single ρ(2)

AB. This of course requires classical feed
forward.

tocol will not increase the entanglement of Gaussian states. The key result is that the

use of certain non-Gaussian states as resource states ( ρ(0)) achieves arbitrarily high

entanglement and purity in the output state (ρ(N)) for sufficiently large N . In fact for

sufficiently high N the output state converges towards a Gaussian state with arbitrarily

high entanglement. Furthermore, mixed states have also be shown to become more pure

throughout their Gaussification. To carry out an implementation of the protocol we must

then consider the “de-gaussification” or generation of non-Gaussian states as a prepa-

ration step. The original proposal introduces a method to generate non-Gaussian states

with linear optics and APDs. The setup from Fig. 2.4 illustrates this procedure. Two

squeezed states are used to generate a state that approximates |φ〉 = |00〉 + µ|11〉 well.

Feeding |φ〉 to the gaussification protocol will make ρ(N) converge towards
∑

n µ
n|n, n〉

for large N. Therefore achieving µ ' 1 is very advantageous. To do so, two squeezed

states can be combined as shown in Fig. 2.4 . This involves the coincident detection

of two click events on the modes a1 and b2 and is therefore a probabilistic preparation

event.

Both the use of non-Gaussian states and the way they are combined (see fig 2.3) hint

at some of the problems of the protocol. The number of starting states increases expo-
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2.2 The (ρ(i) , ρ(i)) Protocol

Diagram of a two step distillation Diagram of a three step distillation

Figure 2.3: : These diagrams show how the resources for the (ρ(i), ρ(i)) protocol scale
exponentially.

Figure 2.4: borrowed from [BESP03], setup for the preparation of non-Gaussian states
in a probabilistic manner. |Sq〉AB ⊗ |Sq〉AB are our starting states which are two
squeezed vacuum states. The successful creation of the non-Gaussian state involves
two “clicks” at the detectors.

nentially with the number of iterations. Additionally, unless we have some switching or

storing for the photons, the number of BS and APDs also seems to do so. And finally,

non-Gaussian states are usually hard to generate or are generated with low probabilities.

Let us then look at the question of resources in more detail.

2.2.2 Resources

To evaluate the resources needed we will have to make some assumptions about the

setup and specifically about how one step of the protocol feeds into the next one. Let us

for now consider three simple scenarios:
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2.2 The (ρ(i) , ρ(i)) Protocol

• Coincidence Scenario: A successful distillation occurs when all the resource non-

Gaussian states ρ(0) are probabilistically obtained simultaneously, the subsequent

ρ(1) are also obtained simultaneously in the next step, and so on until ρ(N) is

reached. Therefore many coincidences are needed.

In this scenario, if one wants to implement N steps of the protocol 2N copies

of ρ(0) are required. If these are generated in the described photon subtraction

scheme, 2 × 2N squeezed states are needed. If each BS and detector is used for

one mode only, then one needs 2N+1 − 2 detectors and BSs for the gaussification

and 2× 2N detectors plus 2N BSs for the preparation step. For instance 3 steps of

the protocol require 16 squeezed states, 24 BSs and 30 detectors.

• Storage Scenario: Here, the first ρ(0) state obtained can be stored until another

one has been produced to begin the distillation. They are then combined pairwise

and each intermediate ρ(i) can be stored until its homologue ρ(i) is obtained. Af-

terwards, once ρ(i) ⊗ ρ(i) is available they are combined, the result stored and so

on. This protocol produces both copies ρ(i) ⊗ ρ(i) with the same BSs and APDs.

When both are obtained they are then mixed in a new BS and detected with new

detectors.

One can make a chain needing (2N + 4) APD detectors and (2N + 2) BS to carry

out N steps. Therefore, 3 steps require only 4 squeezed states, 8 BS and 10 detec-

tors. The resource consumption is therefore reduced from exponential to linear.

In fact we can go even further as shown in Fig. 2.5 . We can go from O(2N) to 4

APDs and 4 BS if we use a clever combination of time delays, classical commu-

nication and storage. Again once a successful state has been created it is stored

while the matching pair is created. When it is, the stored one is put back into the

circuit. Nevertheless the optical switches, the storage in loops and the subsequent

mode matching both in time and space have problems of their own. The loss from

commercially available switches introduces decoherence problems which may be
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2.2 The (ρ(i) , ρ(i)) Protocol

Figure 2.5: Distillation setup with storage. The non-Gaussian states |NG〉 are fed at
set time intervals to the first stage of the protocol. Successful states are stored in fibres
(by means of optical switches (yellow dots) and time delays (grey boxes)). Note that
classical communication must coordinate 4 detectors + 4 switches + 6 time delays.

harder to overcome than the low probabilities 1.

• The Random Walk Scenario: The aim of this setup is to reduce the number of

discarded states: If each run of the protocol requires O(2N) states and it is highly

unlikely that the distillation will succeed, we are throwing away a large number of

entangled states each time. The basic idea is to keep the states whatever the result

and follow the evolution of their entanglement. Specifically, the original protocol

requires all detection events to be a “no click” event. Yet there are many com-

binations of success and failure chains that can lead to increased entanglement

without discarding immediately any “click” event. Let us consider this notation:

The usual protocol describes the transition from one iteration to the next one as:

ρ(i) ⊗ ρ(i) → ρ(i+1). Implicit in the description is that the transformation in Eq.

2.1 maps one stage to the next one. We could instead define a more general map:

ρ
(i+1)
~o1

= 〈1|a2〈0|b2(U � U)(ρ
(i)
~o1
⊗ ρ(i)

~o2
)(U � U)†|1〉a2|0〉b2 (2.2)

1Some standard multiport switches in telecom (Polartis for example) operate in the millisecond regime
with loss < 0.3dB (7%), but the faster ones (≈ 10nsec) usually exhibit more loss ≈ 5 − 15dB (68% -
96%) (IEICE Electronics Express, Vol.5, No.6, 181). One could maybe use a slow one discarding all the
events outside the switching window.
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2.2 The (ρ(i) , ρ(i)) Protocol

where ~o1 is a list carrying the information about all the previous outcomes. For

example, ρ(2)
~o1

might be the state created by the events ~o1 = {1, 0, 0, 0; 0, 1} and

therefore meaning

– ρ(0) ⊗ ρ(0) → ρ
(1)
{1,0} (one click on the left arm)

– ρ(0) ⊗ ρ(0) → ρ
(1)
{0,0} (no clicks)

– ρ
(1)
{1,0} ⊗ ρ

(1)
{0,0} → ρ

(2)
{1,0,0,0;0,1} (one click on the right arm)

Depending on the original ρ(0) state, the output state could have more entangle-

ment than the starting one. Tapping into this resource of otherwise discarded

states can also improve the use of resources. The measurements can of course be

generalized to POVMs and account for lossy APDs and mixed states.

The main conclusion is that the number of states and the number of optical elements

from the original proposal need to be reduced. Reducing it too much requires complex

or deficient technology, so reaching a compromise that improves feasibility is our goal.

The next sections will explore different modifications of the original protocol and the

improvements achieved. However, before we do so we must address another limitation

in more detail.

The Entangled States Resource

In the long run, the distillation is aimed at distilling CV states that have suffered deco-

herence in an optical channel. Mixing can have its source in various physical processes:

depolarisation, phase mixing, photon loss, Gaussian noise, etc. Due to the complexity

of describing states that would occur in practical quantum communication I will adopt

two approaches. The behaviour of pure states in general distillation schemes will be

studied. When possible, conclusions will be generalised to the case of absorbing fibres

(Gaussian Channel) or to arbitrarily mixed states. Also, further chapters will detail the

effect of optical loss and imperfect measurement on coherence in simple examples.
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In the pure case, the most common entangled states will be two mode squeezed vac-

uum states due to their availability. Typically they are described in the Fock basis by:

|Sq〉 = sech(r)
∞∑
n=0

[−eiφ tanh(r)]n|n〉|n〉 =
√

1− λ2

∞∑
n=0

λn|n, n〉 (2.3)

Where r is generally called the degree of squeezing 2. Generating two mode squeezed

states with high average photon number 〈n〉 = 2λ2

1−λ2 is limited by the gain in the para-

metric amplifier and so λ is usually small. The highest degree of squeezing achieved

with a continuous wave laser stands at -9dB [TYYF07] (r ≈ 1). For pulsed light on the

other hand the highest squeezing achieved is -4.6 dB [HFT+05](r ≈ 0.52 and λ ≈ 0.48).

These are however difficult experiments and it is more common to find for χ(2) pulsed

laser Parametric Down Conversion λ ∈ [0.01, 0.2]. This values will eventually set limits

to the rates at which states can be distilled as we will see in the following section.

2.3 Probabilities

The lowest probabilities involved in the problem are found in the ‘Procrustean 3 prepa-

ration’ introduced in [BESP03]. We will see that the probabilities for successful distil-

lation are quite low as soon as we attempt to do many distillation steps.

2.3.1 Probability for the Procrustean Preparation

To gain some insight we will approximate squeezed states neglecting any term of order

O(λ3) or higher: |φsq〉 ≈ 1√
1+λ2+λ4 (|00〉+ λ|11〉+ λ2|22〉)Two bipartite states |φsq〉 ⊗

|φsq〉 start in the upper and lower branches pictured in Fig. 2.6. The left mode of the

2Squeezing reduces the uncertainty in a quadrature of the electromagnetic field. This uncertainty
is often described in the experimental literature as noise and measured in decibels. The noise d and
squeezing parameter r are related by r = (ln(10)/20)d ≈ 0.115d [Bro05].

3 The term ‘Procrustean’ alludes to Procrustes, “a mythical Greek giant who stretched or shortened
captives to make them fit his beds”. In the distillation context it refers to a method which using LOCC
and with certain probability aims at ‘cutting off’ the weight of certain coefficients of the state expanded
in the Schmidt basis. In this case it refers to the probabilistic method of generating non-Gaussian states
while increasing entanglement.
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2.3 Probabilities

Figure 2.6: borrowed from [BESP03], Procrustean generation of the state |φ(0)〉 ∼
|00〉+ µ|11〉 from two squeezed states |Sq〉a1,b1 ⊗ |Sq〉a2,b2.

upper branch is measured and the probability of a click in that detector is simply

P (click1) =
λ2 + λ4

1 + λ2 + λ4
≈ λ2

1 + λ2
. (2.4)

Disregarding the two photon event’s probability (O(λ4)), the state of the system after

the measurement is approximately:

|φ′〉 ≈ 1√
1+λ2+λ4 (|100〉+ λ|111〉+ λ2|122〉). Applying the beam splitter transforma-

tion,

b̂†1 = tb̂†1 + rb̂†2

b̂†2 = t∗b̂†2 − r∗b̂
†
1

and assuming t, r ∈ R it becomes

Û |φ′〉 ∼ r|0, 1, 0〉+ λ
(
t2 − r2

)
|1, 1, 1〉+ t|1, 0, 0〉 −

√
2λ tr|2, 0, 1〉+

√
2λ tr|0, 2, 1〉+

√
3λ2tr2|3, 0, 2〉+ λ2

(
−2 t2r + r3

)
|2, 1, 2〉+(

−2λ2tr2 + λ2t3
)
|1, 2, 2〉+

√
3λ2t2r|0, 3, 2〉
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2.3 Probabilities

And after detection of the second photon, we can write the density matrix as follows:

ρ(0) ∼ Tr 2

{
(1I− |0〉〈0|) Û |φ′〉〈φ′|Û †

}

ρ(0) ≈

〈0, 0| 〈0, 1| 〈1, 1| . . .

|0, 0〉 r2 0 λ (−r2 + t2) r

|0, 1〉 0 2λ2t2r2 0

|1, 1〉 λ (−r2 + t2) r 0 λ2 (−r2 + t2)
2

... . . .

(2.5)

The second event (or click ) occurs with probability,

P (click2) = −(−3 r4 − 2 + 3 r2)λ4 + (−1− r4)λ2 − r2

1 + 2λ2 + 2λ4
(2.6)

if we disregard terms of order λ6 (note that this is consistent with the limitR→ 1 where

the photon from the upper branch |1〉A2 is reflected by the BS and into the detector. In

that case we recover a probability of 1 independent of λ).

One should remember that creating a non-Gaussian state of the form: |00〉 + µ|11〉,

with λ � µ is very advantageous as the distillation can drive it to a highly entangled

state. To achieve this, we need to choose a BS with r such that

|φ(0)〉 ∼ r|00〉+ λrt
√

2|01〉+ λ(t2 − r2)|11〉 ' |00〉+ µ|11〉

And such that all other terms in the rest of the density matrix ρ(0) are sufficiently small.

To achieve this we require r = λ(t2 − r2) which leads to:

r =

∣∣∣∣∣−µ+
√
µ2 + 8λ2

4λ

∣∣∣∣∣ =

∣∣∣∣∣ 2λ

−µ−
√
µ2 + 8λ2

∣∣∣∣∣
which for small λ gives an approximate r ∼

∣∣∣λµ ∣∣∣.
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2.3 Probabilities

We can see if the approximation holds for the case where ρ(0)
0,0,0,0 ' ρ

(0)
1,1,1,1. Indeed

taking r,t ⊂ R and considering as above r =
∣∣∣1−√1+8λ2

4λ

∣∣∣ we can expand the ratios of

the other density matrix elements for small values of λ:

ρ
(0)
0,1,0,1/ρ

(0)
0,0,0,0 = ρ

(0)
2,2,0,0/ρ

(0)
0,0,0,0 = ρ

(0)
0,2,0,2/ρ

(0)
0,0,0,0 = ρ

(0)
1,2,1,2/ρ

(0)
0,0,0,0 = ρ

(0)
2,2,1,1/ρ

(0)
0,0,0,0 = O(λ2)

ρ
(0)
1,2,1,2/ρ

(0)
0,0,0,0 = ρ

(0)
2,2,2,2/ρ

(0)
0,0,0,0 = O(λ4). It is then apparent that the remaining coeffi-

cients will be small for the chosen beam-splitter and a small λ. We can then substitute

the reflectivity r back in probability expression (2.6) to find,

(A) (B)

Figure 2.7: Overall probability of creating a non-Gaussian state of the form |00〉+µ|11〉.
(A) shows the probability of obtaining µ = 1 as a function of the squeezing λ and (B)
shows the probability for different µ starting with two approximate squeezed states with
λ = 0.1 squeezing.

P (click2) ≈ 2
λ2
(

2 + µ2 + µ
√
µ2 + 8λ2

)
(1 + λ2 + λ4)

(
µ+

√
µ2 + 8λ2

)2

Fig. 2.7 shows the total probability with the only approximation being our original

squeezed state. If we assume a usual low intensity pulsed PDC source with 1dB squeez-

ing or λ ≈ 0.1 then µ = 1 is obtained with probability 2 · 10−4. Obviously if we need

to create independently 2N such states to run N stages of the distillation, probabilities

decay very rapidly. Fortunately increasing to 1.8dB (λ ≈ 0.2) increases the probability

by an order of magnitude. We must however explore how these probabilities integrate

in the whole distillation process.
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2.3.2 Probability for the Gaussification

We can see in [BESP03] that the protocol will transform two copies of two-mode non

Gaussian states in the following way:

|ψ(i+1)〉 = 〈00|(U12 ⊗ U12)|ψ(i)〉|ψ(i)〉 (2.7)

Therefore the probability of vacuum outcomes being detected in both modes, at the

i+ 1-th iteration, or the probability of obtaining |ψ(i+1)〉 given two copies of |ψ(i)〉 is:

P (ψ(i+1)) =
〈ψ(i+1)|ψ(i+1)〉
|〈ψ(i)|ψ(i)〉|2

Let us consider the simple example of pure states expressed in the Schmidt basis

as |ψ(i)〉 =
∑

n α
(i)
n |n, n〉. The relation in 2.7 leads to a recurrence relation [BESP03]

which results in a probability:

P (ψ(i+1)) =

∑∞
n=0 2−2n

∑n
r,l=0

(
n
r

)(
n
l

)
α

(i)
r α

(i)
n−rα

(i)
l α

(i)
n−l∑∞

n,m=0 |α
(i)
n |2|α(i)

m |2
. (2.8)

For example if |ψ(0)〉 ∼ |00〉+ µ|11〉, so that α(0)
0 = 1 and α(0)

1 = µ then

P (ψ(1)) =
1 + µ2 + 1

4
µ4

(1 + µ2)2

And so on. These probabilities are quite high. For instance if starting with λ = 0.1

we obtain with probability 2.3 · 10−4 a non-Gaussian state with µ = 0.8 then,

• P (ψ(1)) = 0.64,

• P (ψ(2)) = 0.62,

• P (ψ(3)) = 0.57,
...

• P (ψ(12)) = 0.36.
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Nevertheless the success probability of the overall process is much lower.

2.3.3 Overall Success Probability and Outlook

The way states are combined in the ( ρ(i) , ρ(i)) protocol is represented in Fig. 2.3 and

explained in section 2.2.2. We can then express the overall probability of obtaining the

state |ψ(n)〉 as

PO(ψ(n)) =
n−1∏
r=1

[
P (ψ(n−r))

]2r
which obviously decreases exponentially. For example to reach the third iteration the

probability can be expressed as: PO(ψ(3)) = P (ψ(0))23
P (ψ(1))22

P (ψ(2))21
P (ψ(3)) where

P (ψ(0)) is given by (2.6 and 2.4) and the rest by (2.8). Considering the above more or

less realistic values, λ = 0.1, µ = 0.8, we obtain the following overall probabilities:

• PO(ψ(1)) ≈ 3 · 10−8,

• PO(ψ(2)) ≈ 8 · 10−16,

• PO(ψ(3)) ≈ 7 · 10−24,

...

This may seem incredibly low, but one must remember that a single step requires

creating two non-Gaussian states (4 coincident detections of photons) and two coinci-

dent detections of vacuum. Two steps already requires the coincident detection of 8

clicks and 4 no-clicks, which already exceeds what is possible with a Megahertz pulsed

laser (one ψ(2) event every 10 days approximately!).

A few parameters can help us reach a compromise between entanglement increase and

probability. The degree of squeezing λ and the main coefficient in the non-Gaussian
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state µ leave room for improvement, but not much. In the case of an optimistic λ = 0.3

and a conservative µ = 0.6 we obtain PO(ψ(1)) ≈ 1.7 · 10−4, PO(ψ(2)) ≈ 2 · 10−8,

PO(ψ(3)) ≈ 4 · 10−16, putting the third iteration out of reach.

This chapter has lead us to identify two major problems in the ( ρ(i) , ρ(i)) protocol.

The exponential use of resources and the exponentially small probabilities of success.

This invites us to explore other methods to produce non-Gaussian states and new ways

of combining them.

2.4 Non-Gaussian Resource States

Performance of the Non-Gaussian States

Our first goal was to investigate which useful non-Gaussian states can be created in

a Procrustean step to feed in the gaussification-distillation protocol. To do so I esti-

mated the outcome when starting with two copies of a two mode squeezed state, using

a beam splitter and conditioning success upon detection in both detectors (where detec-

tors only discriminate between presence or absence of photons). I found however that

the probabilities were prohibitively small and the resources large (two squeezed states

for each non-Gaussian state). One could even wonder, if with real avalanche photo

diode (APD) detectors and without neglecting terms of order λ4, the non-Gaussian state

is non-Gaussian and shows an increase in entanglement. If lossy detectors introduce

mixing, the entanglement might not increase that much. Furthermore, if the approxima-

tion |00〉 + µ|11〉 doesn’t hold, the higher order terms might make it a state close to a

Gaussian state (with the coefficient of |22〉 close to λ2, and equally for higher orders)

mixed with cross terms. If the non-Gaussian state is indeed too close to a Gaussian one,

it will converge in a few iterations to that state, bypassing the entanglement increase.

To study this question I developed a series of procedures in Maple grouped un-

der the module Quantavo presented in appendix C.1. With it one can quickly answer

this question to a good degree of approximation. The states leading to the Procrustean

non-Gaussian mixed state are simulated up to 6 photons and I model our detectors as
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imperfect lossy APDs (putting a 50% reflective BS in front of them). That way, for

instance, the approximate single photon heralded in the upper branch of fig 2.6 is pro-

portional to:



〈1| 〈2| 〈3| 〈4| 〈5|

|1〉 0.51 0 0 0 0

|2〉 0 0.759λ2 0 0 0

|3〉 0 0 0.882λ4 0 0

|4〉 0 0 0 0.94λ6 0

|5〉 0 0 0 0 0.971λ8


.

I will refer to the state created combining this one and the squeezed state (fig. 2.6) using

imperfect detection as ρ(0)
P , where P stands for Procrustean. To confirm whether the

state ρ(0)
P is non-Gaussian or not some elements related to its Wigner function can be

studied [Wig32]. The Wigner function, or Wigner quasi-probability-distribution is the

Fourier transform of the characteristic function introduced earlier (1.9):

Wρ(ξ, s) =
1

(2π)2N

∫
eiξση χ(η) es/4||η||

2

d2Nη (2.9)

where Wρ(ξ, 0) is the Wigner Function, and the related distribution Wρ(ξ,−1) is the

Q function. The Wigner function is also Gaussian for Gaussian states and provides an

alternative but complete representation of states in phase space [Sch01]. Since ρ(0)
P is a

bipartite entangled state, it’s Wigner function is a 4-dimensional object which we can’t

visualize easily. However one can plot partial information about it and draw conclusions

about its Gaussianity. I suggest two approaches do to so:

The first one is to plot what would be seen if we measured both modes together. That

way, both modes would be merged and could be represented in 2D. For instance, if we

wanted to measure |0, 0〉+|1, 1〉+|1, 0〉 but the modes where travelling on a same spatial

mode we could choose not to distinguish them and effectively measure |0〉 + |2〉 + |1〉.
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Figure 2.8: Wigner functions of our starting states. The tall Gaussian function cor-
responds to a single mode of |Sq〉 ∼

∑6
n=0 0.1n|n, n〉 obtained as Tr A {|Sq〉〈Sq|}.

The function on the far right is Tr A

{
ρ

(0)
P

}
, the most mixed starting state and has

the deepest dip while remaining positive. Finally the non-Gaussian one on the left is
Tr A {C(|00〉+ 0.8|11〉)× (c.c.)} which has a shallow dip and remains positive for all
values of X and P .

The idea is to plot the Wigner function of that last state. To show that this preserves

Gaussianity consider the following: To merge two modes |n〉|m〉 we need to implement

the map |n,m〉 −→ |n+m〉. If this map preserves Gaussian states, then the Wigner

function of both
∑

n,m αn,m|n,m〉 and
∑

n,m αn,m|n+m〉 should be Gaussian. This

can be shown to hold since the map |n〉A|m〉B −→ |n+m〉A|0〉B can be implemented

with Gaussian operations alone. Indeed combining modes A and B at a beam splitter and

conditioning upon vacuum detection does just that. Operationally, one would combine

the two modes in a BS and homodyne port A only when port B measured the vacuum.

The second method involves tracing out one of the modes and plotting the Wigner
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function of the remaining one. Indeed, if ρ is Gaussian, then its characteristic func-

tion χρ(ξ) is too. But from the definition of χρ(ξ) (1.9) we see that the different modes

can be factorised, and therefore the characteristic function without the traced-out mode

will be a Gaussian too. This lets us draw the conclusion that if the Wigner function of

Tr A

{
ρ

(0)
P

}
is not Gaussian then the state ρ(0)

P is not Gaussian either.

We plot the Wigner function for a squeezed state and two non-Gaussian states in fig.

2.8. The plot displays the Wigner functions obtained tracing out one mode. In it we can

see the striking non-Gaussian character of the state |00〉 + 0.8|11〉. It also shows how

the state ρ(0)
P which approximates the latter is highly non-Gaussian too in spite of the

imperfect detection that generated it. It is quite remarkable that both ρ(0)
P and the pure

|00〉 + 0.8|11〉 have very similar Wigner functions. However we must remember that

we trace out one of the modes. This makes both states mixed while retaining similar

photon number distributions. This single mode Wigner function representation obvi-

ously conceals some of the state’s properties but reveals it’s non-Gaussian properties.

We also studied different ranges of detector efficiencies (40% − 84%) and squeezing

λ ∈ [0.1, 0.5] finding similar qualitative results.

I also explored the second way of visualizing Wigner functions of two mode states. I

will call this representation, which measures two modes as one, a merged Wigner func-

tion. The merged Wigner function also provides an incomplete description but reveals

new properties. Obviously the squeezed states will still appear as Gaussians for any λ.

However |00〉+0.8|11〉 and ρ(0)
P display the profile of combinations of even Fock states.

Furthermore they exhibit new non-classical features such as negative Wigner functions

as shown in Fig. 2.9. Again this is obviously a good method to observe Gaussianity or

lack thereof.
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2.4 Non-Gaussian Resource States

Figure 2.9: Merged Wigner functions of our starting states. The tall Gaussian
function corresponds to a single mode of |Sq〉 ∼

∑6
n=0 0.1n|n, n〉 transformed to

|Sq〉 ∼
∑6

n=0 0.1n|2n〉. The Wigner function on the right is derived from ρ
(0)
P also with

the Gaussian procedure |n,m〉〈s, t| → |n+m〉〈s+ t|. On the far left we can see the
state corresponding to |00〉+ 0.8|11〉 and therefore to |0〉+ 0.8|2〉. The merged Wigner
functions of both non-Gaussian states display negative values providing no classical
analogue for this state.
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2.4 Non-Gaussian Resource States

Initial Entanglement

Beyond the non-Gaussianity we would also like to know if the method to produce ρ(0)
P

with reasonable detector efficiencies and squeezing enhances entanglement. Fig. 2.10

compares the entanglement of a pure squeezed state and that of the non-Gaussian state

generated from it (2.5). We plot the Logarithmic Negativity:

EN = log2 ||ρΓ
A||1

which is a measure of Entanglement [Ple05, PV07] (with ΓA being the partial transpose

with respect to subsystem A, and || · ||1 the trace norm).

0.0
0.42

0.4

0.5

0.22 lambda0.2

E_N

r

1.0

0.020.0

Figure 2.10: Logarithmic Negativity vs. (r,λ) where λ describes the squeezing of
our original state |Sq〉 ∼

∑6
n=0 λ

n|n, n〉 and r is the reflectivity amplitude for the BS
involved in the Procrustean preparation of non-Gaussian states from [BESP03]. The
surface independent of r is the Log-Negativity of the original squeezed state, and the
other surface is the Log-Negativity of the non-Gaussian state ρ(0)

P discussed in the last
section.

Thanks to this accurate description we can see that there is a range of (λ,r) for

which the Procrustean preparation succeeds at increasing the entanglement (even using

50% efficient APDs). We find however, that as λ increases, the range of adequate r-s

diminishes. For λ > 0.3 the mixing that higher photon number contributions introduce

is too great. Looking at the Negativity surface we can choose a pair (λ, r) = (0.1, 0.1)

such that the initial entanglement is enhanced.

We simulated a few steps of the Gaussification with a mixed and non-Gaussian state
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Squeezed

l = 0.1

NonKGauss

f 0

|01OC|10O

f 1

f 2
f 3

R = 1
2

Iteration
K1 0 1 2 3 4

E_N

0

1/2

1

3/2

2
LogNegativity for subsequent steps of the Gaussification

Figure 2.11: Log-Negativity vs. number of iterations for the (ρ(i), ρ(i)) protocol.
We display the evolution of two starting states: in RED: The initial ρ(0) is created
with the Procrustean protocol discussed earlier (cf. 2.5) choosing the parameters
(λ, r) = (0.1, 0.1) and using imperfect APDs. in BLUE: The initial state is a per-
fect

√
(1/2)|01〉 + |10〉 as discussed in 2.4. In both cases the detectors involved in the

Gaussification have a 50% efficiency.

having parameters (λ, r) = (0.1, 0.1) and ignoring O(λ6) or higher. The evolution of

entanglement for these steps is displayed in Fig. 2.11 in RED. We discover that in spite

of the mixing, the protocol could increase the entanglement five-fold in a few steps. We

must remember however that the chosen parameters imply unrealistic probabilities. Let

us then look at other alternatives preserving this performance.

Single photons on demand

In the Procrustean step that generates ρ(0)
P , the upper branch basically prepares a her-

alded photon which is then mixed at the BS. An alternative would be then to find a de-

terministic source producing single-photons to a certain degree of approximation. Great

progress has been made in recent years in the generation of single photons [BAS+06,

Shi07, HSG+05, WKU+05, LO05, LHSJ+08, GSV04, DGI+07], so this avenue could

be an interesting one for the near future. More specifically if we had on-demand pho-
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Squeezed
l = 0.1

NonKGauss
f 0

|01OC|10O
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Iteration
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LogNegativity for subsequent steps of the Gaussification

Figure 2.12: Log-Negativity vs. number of iterations for the (ρ(i), ρ(i)) protocol.
We display the evolution of two starting states: in RED: The initial ρ(0) is created
with the Procrustean protocol discussed earlier (cf. 2.5) choosing the parameters
(λ, r) = (0.1, 0.1) and using imperfect APDs. in BLUE: The initial state is a per-
fect

√
1/2(|01〉+ |10〉) obtained from on-demand sources or heralded photons. In both

cases the detectors involved in the Gaussification have a 84% efficiency.

tons matching the frequency of the down-converted photons we could feed them to the

upper port of the BS to generate the Non-Gaussian states from eq. (2.5). this would

change the probabilities of the distillation presented above (λ = 0.1, µ = 0.8) to:

• PO(ψ(1)) ≈ 3 · 10−8 −→ 3 · 10−4

• PO(ψ(2)) ≈ 8 · 10−16 −→ 9 · 10−8

• PO(ψ(3)) ≈ 7 · 10−24 −→ 4 · 10−15

...

making another iteration possible. Obviously this implementation has its own chal-

lenges like mode matching, availability of on-demand photons of matching frequency,

etc. A more interesting alternative is to use a different initial state. Having single pho-

tons we can easily generate entangled states. Indeed, combining the photon with the

vacuum at a BS will create a state proportional to |01〉+ |10〉. Assuming we have such

a perfect source I have plotted the evolution of the entanglement in Fig. 2.12 and 2.11.

We notice that this type of initial state is not as resilient to imperfect detectors as ρ(0)
P .
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In fact 50% efficient detectors only ensure a temporary entanglement enhancement in-

troducing too much mixing after the second iteration. Fortunately we can easily study

the dependence of the achieved Log-Negativity with the detector efficiency as shown in

fig. 2.13. However the most important point raised by the use of on-demand photons

R=50%

|01OC|10O

f 1

f 2

f 3

r
0 0.2 0.4 0.6 0.8 1.0

E_N

0

1

2

3
LogNegativity vs Detector Efficiency

Figure 2.13: Log-Negativity vs. detector efficiency. (The detector efficiency T is
modelled with a BS in front of the detector having reflectivity R = r2 and such that
T + R = 1). The initial state is a perfect

√
1/2|01〉 + |10〉 and we study 3 iterations

of the (φ(i), φ(i)) protocol. Note that for efficiencies higher than 64% entanglement will
increase at each step.

concerns probabilities. Consider the following overall probabilities for two different

detection efficiencies:

T=50% T=70%5A

PO(ψ(1)) ≈ 0.62 PO(ψ(1)) ≈ 0.54

PO(ψ(2)) ≈ 0.2 PO(ψ(2)) ≈ 0.12

PO(ψ(3)) ≈ 0.017 PO(ψ(3)) ≈ 0.004.

This makes it possible to perform N iterations if photons can be produced at rates

above 1/PO(ψ(N)) ( a few tens of kHz suffice for the first steps).
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The values of the probabilities and Log-Negativity we have obtained are quite encour-

aging. It means that single photon sources can be used for distillation beyond finite

dimensions and into CV distillation with linear optics.

Photon Subtraction and Heralding

Another path for improvement, particularly concerning resources and probabilities is

using a single squeezed state to produce a single Non-Gaussian state. Great progress

has been made in recent years in the generation of non-Gaussian states with photon sub-

traction [OP05b, NNNH+06, AOBG07, OTBG06]. This technique refers to interposing

a highly transmissive beam splitter on the path of the Gaussian state and measuring a

photon on the reflected mode. This operation approximates the subtraction of a pho-

ton from the beam thus implementing a non-Gaussian operation through measurement.

Ubiquitous PDC crystals can be used to generate the state from which the photon will be

subtracted and we will study this case in detail in chapter 3. Again the parameters from

the BS and initial squeezing require careful examination taking into account mixing and

imperfect detection. Since only one detection is involved to generate the non-Gaussian

states the probabilities are more favourable than for the two-detection-ρ(0)
P discussed

earlier.

Given the interesting results one can obtain using single photons, heralding is an in-

teresting substitute for on-demand deterministic single photons. For PDC sources pro-

ducing two mode squeezed vacuum states it is possible to measure a down converted

photon preparing a single photon on the other branch. Thanks to the contact with the

Ultrafast Group at the University of Oxford I have been able to collaborate in the per-

formance assessment of such schemes. More details about practical proof of principle

experiments with heralding and photon subtraction will be discussed in chapter 3.
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State Combination

Another problem which seems at the core of the (ρ(i), ρ(i)) protocol is the way states are

combined to reach the i-th iteration. Obviously the exponential scaling of non-Gaussian

resource states makes probabilities sink very quickly. This suggests that maybe the

(ρ(i), ρ(i))→ ρ(i+1) structure is not the optimal one. We can think in broad terms about

the protocol and try to extract the crucial element that allows the entanglement increase.

So, what does one iteration of the protocol really do to increase the entanglement?

Simply put, if no photons are detected in the upper detectors, then the photons from the

upper and lower branch are now “part of the output state”. Obviously a more rigorous

statement could be constructed with the probability amplitudes, but we only want to

gain some intuition. In fact, the way this doubling of the number of photons affects

the photon number distribution is the key. When starting from simple states such as

|00〉 + |11〉 it is easy to get an intuition. At each stage more and more Fock layers are

populated, and their respective weights are related to the binomial coefficients (arising

from the BS) and to the initial state’s photon number distribution. Gaussian states, due

to their thermal distribution exactly match this redistribution of weights, and as more

photons are added they exactly reproduce the original distribution. Roughly speaking,

if we want to use this philosophy together with linear optics all we need to do is make

sure non-Gaussian states are added shifting the weight of the smaller Fock layers to

the upper ones. However combining always identical states as the (ρ(i), ρ(i)) protocol

does is not a necessary requirement for distillation. Coming back to the distillation

paradigm, if we have ρ⊗N0 non-Gaussian states, one needs not combine them in pairs,

then make new pairs, etc. Thinking of other more creative ways to combine them is of

course possible, but the less structure we impose the harder the analysis will become.

Let us then look at the first and simplest modification of the protocol which reduces the

exponential consumption of optical elements to linear.
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Figure 2.14: Diagram of how the states are combined in the (ψ(i), ψ(0)) setup.

2.5 The (ρ(i) , ρ(0)) Protocol

We will study the pure case where the (|ψ(i)〉,|ψ(i)〉) protocol is substituted by the

(|ψ(i)〉,|ψ(0)〉) one in an attempt to increase the success probabilities and experimen-

tal feasibility. We will also study different properties of the new setting like its fixed

points and the evolution of simple starting states.

2.5.1 The pure (|ψ(i)〉,|ψ(0)〉) case.

Description

The protocol considered will mix the two mode state |ψ(i)〉 in the upper branch with

the two mode state |ψ(0)〉 in the lower branch at 50/50 beam splitters as shown in figure

2.15. After non-detection of photons at the two detectors, we will obtain the two mode

state |ψ(i+1)〉 in the output ports. This last state will be mixed in the next iteration with

another |ψ(0)〉 state, and so repeatedly. In a first instance we will analyse the properties

of pure states in Schmidt form |ψ0〉 =
∑∞

n=0 αn,n|n, n〉. Two copies of them are mixed

at 2 beam splitters which implement the transformation:

 â†1

â†2

 =

 T R

−R∗ T ∗

 ĉ†1

ĉ†2

 (2.10)

Let us denote the tensor product between the upper and lower branches by
⊙

to avoid

confusion with the right/left tensor product ⊗. The beam splitters will then transform
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Figure 2.15: (ψ(i), ψ(0)) setup. After combining ψ(0)⊗ψ(0) and the detection, the output
in the lower branch will be ψ(1). This last one, combined with another ψ(0) will become
ψ(2), and so on.

the states as follows:

(Û12

⊙
Û12)|ψ0〉|ψ0〉 = (Û12

⊙
Û12)

∞∑
n,m=0

αn,nαm,m|nA, nB〉|mA,mB〉

=
∞∑

n,m=0

αn,nαm,m

(RAc
†
2 + TAc

†
1)n√

(n!)

(T ∗Ac
†
2 −R∗Ac

†
1)m√

(m!)

(RBd
†
2 + TBd

†
1)n√

(n!)

(T ∗Bd
†
2 −R∗Bd

†
1)m√

(m!)
|0〉

=
∞∑

n,m=0

n∑
k,j=0

m∑
l,p=0

Γk,lj,p

|m+ n− l − k〉c2|l + k〉c1|m+ n− p− j〉d2|p+ j〉d1 (2.11)

With

Γk,lj,p =
αn,nαm,m
n!m!

 n

k

 m

l

 n

j

 m

p


(RA)n−k (TA)k (T ∗A)m−l (R∗A)l (RB)n−j (TB)j (T ∗B)m−p (R∗B)p

(−1)l+p
√

(p+ j)!(l + k)!(m+ n− p− j)!(m+ n− l − k)!

where the indices n and m are self understood for the sake of clarity.
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Measurement

One iteration of the protocol can be described by the following operation:

|ψ(i+1)〉 = 〈0|c1〈0|d1(Û12

⊙
Û12)|ψ(i)〉|ψ0〉

It can be seen from eq. (2.11) that the coefficients α(i)
n,n after detection of zero photons

in the upper branches will be mapped onto the coefficients α(i+1)
n,n . Let us study the

particular case when R = T = 1√
2
,

(RA)n−k (TA)k (T ∗A)m−l (R∗A)l (RB)n−j (TB)j (T ∗B)m−p (R∗B)p =
1

2n+m
.

If we restrict our attention to this case and after detecting 0 photons in the paths c1

and d1 the state will have non vanishing terms for k + l = 0 and p + j = 0. Therefore

when k = l = p = j = 0 we obtain the final state:

|ψ(i+1)〉 =
∞∑

n,m=0

1

2n+m
α(i)
n,nα

(0)
m,m

(n+m)!

n!m!
|n+m〉c1|m+ n〉d1

That can be expanded as:

|ψ(i+1)〉 =
1

20
α

(i)
0,0α

(0)
0,0|0〉|0〉+

1

21
(α

(i)
0,0α

(0)
1,1 + α

(i)
1,1α

(0)
0,0)|1〉|1〉+

1

22
(

2!

2!1!
α

(i)
0,0α

(0)
2,2 +

1!

1!1!
α

(i)
1,1α

(0)
1,1 +

2!

1!2!
α

(i)
0,0α

(0)
2,2)|2〉|2〉+ ...

....+
1

2n

n∑
r=0

n!

(n− r)!r!
α(i)
r,rα

(0)
n−r,n−r|n〉|n〉+ ... =

∞∑
n=0

 1

2n

n∑
r=0

 n

r

α(i)
r,rα

(0)
n−r,n−r

 |n〉|n〉
So that we obtain the recurrence:

α(i+1)
n,n =

1

2n

n∑
r=0

 n

r

α(i)
r,rα

(0)
n−r,n−r (2.12)
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Remark: Note that as long as we choose the same phase for both beam splitters the

result is unaffected since:

(−c†1+c†2)n√
(n!)

(c†2+c†1)m√
(m!)

(−d†1+d†2)n√
(n!)

(d†2+d†1)m√
(m!)

= (−1)2n (c†1−c
†
2)n√

(n!)

(c†2+c†1)m√
(m!)

(d†1−d
†
2)n√

(n!)

(d†2+d†1)m√
(m!)

2.5.2 Fixed points and Uniqueness

We will designate the map in eq. (2.12) as Φ(α(i))= α(i+1). It is then straightforward

to see that if our Schmidt coefficients are {α(0)
n }∞n=0 = {λn}∞n=0 where λ is a constant

satisfying 1 > λ ≥ 0, then the states so defined are fixed points of the map achieved by

the protocol in the sense that Φ(α(i))= α(i) and therefore |ψ(i+1)〉 = |ψ(i)〉 = |ψ(0)〉 ∀i.

Uniqueness of the solution:

Any fixed point will have to satisfy the following conditions:

1. α(i)
0 = α

(i)
0 .α

(0)
0 =⇒ α

(i)
0 = 1

2. α(i)
1 = 1

2
(α

(i)
0 .α

(0)
1 + α

(i)
1 .α

(0)
0 ) =⇒ α

(i)
1 = 1

2
(α

(0)
1 + α

(i)
1 ) =⇒ α

(i)
1 = α

(0)
1 = λ

3. α(i)
2 = 1

4
(α

(i)
0 .α

(0)
2 + 2α

(i)
1 .α

(0)
1 + α

(i)
2 .α

(0)
0 ) = 1

4
(α

(0)
2 + 2λ2 + α

(i)
2 ) ==⇒

α
(i)
2 = 1

3
(α

(0)
2 + 2λ2) = α

(0)
2 ⇒ α

(i)
2 = λ2

4. α(i)
3 = 1

7
(α

(0)
3 + 4λ2λ+ 2λ3) = α

(0)
3 ⇒ α

(i)
3 = λ3

...

...

N. We will prove by induction that if α(i)
n = λn holds for n < N then it is true for N .

Indeed if Φ(α(i))= α(i) ∀ i, then α(0)
N = α

(1)
N = α

(i)
N and therefore:
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α
(i)
N,N =

1

2N

N∑
r=0

 N

r

α(i)
r,rα

(0)
N−r,N−r

=
1

2N

α(0)
N,N +

N−1∑
r=1

 N

r

α(i)
r,rα

(0)
N−r,N−r + α

(i)
N,N


=

1

2N

α(0)
N,N +

N−1∑
r=1

 N

r

λrλN−r + α
(i)
N,N



The invariance Φ(α(i))= α(i) ∀ i imposes

α
(i)
N,N =

1

2N − 1

α(0)
N,N +

N−1∑
r=1

 N

r

λrλN−r

 = α
(0)
N,N

⇒ α
(0)
N,N =

1

2N − 2

 N∑
r=0

 N

r

λN − 2λN


α

(0)
N,N =

1

2N − 2

(
2N − 2

)
λN QED.

It can be concluded that only the squeezed vacuum states are fixed points (in the

sense described above) of the map defined by this protocol.

2.5.3 Convergence

Convergence of an arbitrary starting state:

It would be interesting to know the answer to the following question:

given {α(0)
n,n}∞n=0 with α(0)

0,0 = 1 and 0 ≤ α
(0)
1,1 < 1, what is

lim
i→∞

α(i)
n,n ?
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Our starting state can be described by {α(0)
n }∞n=0. Let us for now consider only an

arbitrary set of real numbers that we will call {kn}∞n=0. If so, what will the expression

{α(i)
n }∞n=0 be? In general, the n-th term after i iterations α(i)

n will be a function of i, n and

the set {kn}n−1
n=0. We can see that as follows: equation 2.12 gives a recurrence relation

for each n so that:

• n=0 α
(i+1)
0 = α

(i)
0 .α

(0)
0 (recurrence) =⇒ α

(i)
0 = ki+1

0 (general term)

• n=1

α
(i+1)
1 =

1

2
(α

(i)
0 .α

(0)
1 + α

(i)
1 .α

(0)
0 )

=
ki+1

0 k1

2
+
k0

2
αi1

= Θ1,i +
k0

2
αi1 =⇒ α

(i)
1 =

i−1∑
l=0

Θ1,i−1−lk
l
0 +

(
k0

2

)i
k1

...

• n

α(i+1)
n =

1

2n

n∑
r=0

 n

r

α(i)
r .α

(0)
n−r (2.13)

= Θn,i +
k0

2n
αin =⇒ α(i)

n =
i−1∑
l=0

Θn,i−1−lk
l
0 +

(
k0

2n

)i
kn

Only the term of the sum α
(i)
n in eq. 2.13 will define a recurrence, and the other terms

will introduce a constant dependent on i,n and {kn}nn=0, namely Θn,i(k0, k1, ..., kn, i, n):

a polynomial of all the starting coefficients lower than n. Having broken the symmetry

from the original (|ψ(i)〉, |ψ(i)〉) we can see that some terms that cancelled out in these

recursions [BESP03] do not anymore. This makes the general states of this protocol

more difficult to analyse. However, at the present time, a few steps of the distillation are
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2.5 The (ρ(i) , ρ(0)) Protocol

still a challenging and interesting task. We will therefore analyse in detail the evolution

of a couple of simple states.

2.5.4 The |ψ(0)〉 = |0, 0〉+ λ|1, 1〉 case

T=90% f 5

|00O C    |11Ol

l
0 1 2 3

E_N

0

0.5

1.0

1.5

2.0

2.5
LogNegativity vs. lambda

Figure 2.16: Log-Negativity vs. lambda. The initial state is a perfect
√

1/2(|00〉 +
λ|11〉) and we study 5 iterations of the (φ(i), φ(0)) protocol. (The increasing order of the
curves matches that of the iteration number). To simulate the protocol we used detectors
with 90% efficiency.

Interestingly, if we take the initial state: |ψ(0)〉 = 1
1+λ2 (|0, 0〉+ λ|1, 1〉), therefore{

{α(0)
n }∞n=0 / α

(0)
n = 0 ∀ n > 1

}
the recurrence in eq. (2.12) will become:

α(i+1)
n =

nλ

2n
α

(i)
n−1 +

1

2n
α(i)
n

which leads in the limit i→∞ to a state of the form:

limi→∞ |ψ(i)〉 = K
(
|0, 0〉+ λ|1, 1〉+ 2

3
λ2|2, 2〉+ 2

7
λ3|3, 3〉+ ...+ n!Qn

j=1(2j−1)
λn|n, n〉

)

Therefore this new recurrence implies:

lim
i→∞

αin =
n!∏n

j=1(2j − 1)
λn (2.14)
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as well as

αin = 0 if i ≤ n− 1

We can illustrate the evolution of the coefficients with each iteration in the following

matrix:

i −→

n ↓



1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

λ λ λ λ λ λ λ λ

0.0 0.5λ2 0.6λ2 0.6λ2 0.6λ2 0.6λ2 0.6λ2 0.6λ2

0.0 0.0 0.2λ3 0.2λ3 0.3λ3 0.3λ3 0.3λ3 0.3λ3

0.0 0.0 0.0 0.04λ4 0.06λ4 0.07λ4 0.07λ4 0.07λ4

0.0 0.0 0.0 0.0 0.007λ5 0.01λ5 0.01λ5 0.01λ5

0.0 0.0 0.0 0.0 0.0 0.0007λ6 0.001λ6 0.001λ6

0.0 0.0 0.0 0.0 0.0 0.0 0.00003λ7 0.00005λ7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000001λ8


This clearly indicates (as does eq. 2.14) that the Entanglement is going to saturate

eventually after a few iterations since any large coefficient will be damped by the term

1/
∏n

j=1(2j − 1). This can be seen to hold also for imperfect detectors as evidenced

by Fig. 2.16. In this case λ = 1 will not be optimal, but rather λ = 2. Again the

resilience to detector loss is displayed in fig. 2.17. It is interesting to note that for the

above starting state the (ρ(i), ρ(0)) protocol drives lim
i→∞

ρ(i) to a non-Gaussian state. This

contrasts with the (ρ(i), ρ(i)) protocol but has its advantages. For example the generation

of non-Gaussian states could be geared towards the violation of Bell inequalities.

As we discussed earlier for the (ρ(i), ρ(i)) protocol, single photons sources make it

worthwhile studying the performance of initial states of the form |01〉 + |10〉. We find

however that they are not very robust to detector loss as fig. 2.18 shows. In fact de-

tectors need efficiencies close to 95% to achieve 4 iterations making the use of such

states impractical in the (ρ(i), ρ(0)) setup. Since 95% is already quite high, calculation

were not made beyond 4 iterations but the tendency suggests a need for even higher
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Figure 2.17: Log-Negativity vs. detector efficiency and λ from the initial state ∼
|00〉 + λ|11〉. (The detector efficiency T is modelled with a BS in front of the detector
having reflectivity R = r2 and such that T + R = 1). We study 3 iterations of the
(φ(i), φ(i)) protocol where the yellow surface illustrates the entanglement of the initial
state. Note that for efficiencies higher than 64% entanglement will increase at each step.

efficiencies as iterations increase.

2.5.5 The (|ψ(i)〉,|ψ(0)〉) parameters

2.5.6 Introduction

In the following section we will investigate if any further improvement can be achieved

choosing specific beam splitters (the same on both sides). In particular, starting with

the simple case of |ψ(0)〉 = |0, 0〉+ λ|1, 1〉, we will study the relationship between R, T

and λ that optimizes the increase of entanglement. In this case then Γ from eq. (2.11)

becomes:
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T = 95 %

|01OC|10O
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f 2

f 3

f 4
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Figure 2.18: Log-Negativity vs. detector efficiency. (The detector efficiency T is
modelled with a BS in front of the detector having reflectivity R = r5A5A5A5A5A2

and such that T +R = 1). The initial state is a proportional to a perfect |01〉+ |10〉 and
we study 4 iterations of the (φ(i), φ(0)) protocol. Note that only for efficiencies higher
than 95% entanglement will increase at each step.

Γn,m,l,k,p,j =
1

n!m!

 n

k

 m

l

 n

j

 m

p


(R)2n−k+l−j+p (T )2m−l+k−p+j

(−1)l+p
√

(p+ j)!(l + k)!(m+ n− p− j)!(m+ n− l − k)!

In this first approach, we have taken R and T to be real for simplicity. Now, after

detecting 0 photons in the paths c1 and d1 the state will have non vanishing terms for

k + l = 0 and p+ j = 0 and therefore when k = l = p = j = 0 results in a final state:

∞∑
n,m=0

α(i)
n,nα

(0)
m,mR

2nT 2m (n+m)!

n!m!
|n+m〉c2|m+ n〉d2
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Which can be rewritten as

|ψ(i+1)〉 =
∞∑
n=0

 n∑
r=0

 n

r

R2rT 2n−2rα(i)
r,rα

(0)
n−r,n−r

 |n〉|n〉 (2.15)

So that:

α(i+1)
n,n =

n∑
r=0

 n

r

R2rT 2n−2rα(i)
r,rα

(0)
n−r,n−r (2.16)

Again for the simple starting state |ψ(0)〉 = |0, 0〉+ λ|1, 1〉 the second coefficient of the

recurrence becomes:

α
(i+1)
1 = T 2λ+R2α

(i)
1

Which again guarantees α(i)
1 = λ ∀i since R2 + T 2 = 1. Therefore the above general

recurrence (2.16) will become:

α(i+1)
n = R2n

{
n

(
1

R2
− 1

)
λ α

(i)
n−1 + α(i)

n

}

Very quickly after a few iterations the state becomes quite complex and it becomes

easier to explore the interesting parameters with the Quantavo procedures. The basic

conclusion is that other values different from R =
√

1/2 can guarantee maximum

entanglement increase, and therefore it is a parameter worth optimizing when designing

practical distillation implementations.

2.6 Work in Progress: Homodyne Distillation Pumping

In this section we give an introduction to work in progress aimed at improving the

performance of a continuous variable (CV) linear optics (LO) entanglement distilla-

tion scheme. In the previous section we discussed the strengths and weaknesses of

the Gaussification and distillation procedure from [BESP03, EBSP04]. Although not

crucial, inefficiencies in detection affect the performance of the protocol. This section
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2.6 Work in Progress: Homodyne Distillation Pumping

discusses some of the options available to improve such performance and the way to

assess it.

There are currently very precise and efficient photodiode detectors with near single pho-

ton sensitivity. However the optimal sensitivity is only achieved above certain intensity.

When only a few photons arrive at the detector, dark counts are too important and mask

the signal. However when many photons arrive it has a very good response and can

distinguish N and N+1 photons. How does one then measure low-intensity states with

such detectors? The response to that question, known as quantum homodyne detection

is the following: If one shines a coherent state at a 50/50 BS and detects both output

ports with two photodiodes one will find the same intensity on each. However if on

the other incoming port of the BS our low-intensity state ρ meets the coherent state (or

Local Oscillator) |α〉, then it will perturb the outputs which won’t be equal anymore.

The difference in the intensities seen by each detector allow us to reconstruct ρ [Leo97].

In fact, the coherent state (also called phase reference or local oscillator) in a setup of

beam splitters before 2 or 4 detectors can effectively implement the POVMs |α〉〈α|,

|X〉〈X| or |P 〉〈P |. This can be done with detector efficiencies above 90%, making it an

extraordinary tool.

In our case, we would like to describe the evolution of states transformed according

to the Gaussification protocol when we exchange the vacuum projection |0〉〈0| with 8

port homodyning |α〉〈α| as was suggested in [EBSP04, EPB+07]. Of course it should

be apparent that in the limit α→ 0 the measurements become formally equivalent. The

practical realization however is more subtle and the formalism has to be studied care-

fully. Our aim is then to describe the evolution of the states through such a protocol

characterizing their entanglement and purity evolution. We will introduce some of the

notation, techniques and formalism used to tackle this problem.
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2.6 Work in Progress: Homodyne Distillation Pumping

2.6.1 Non-Gaussian Previous Step

Our initial resource states are many copies of two mode squeezed vacuum states ρ⊗Nsq

that we expand in the Fock basis as:

ρsq ∼
∞∑

n,m=0

λn+m|n, n〉〈m,m|.

If we are to use Gaussian operations in the distillation scheme (BS, homodyning, phase

shifters) then these states must be converted to non-Gaussian states prior to the ap-

plication of the protocol. This can be done having recourse to a non Gaussian mea-

surement (for instance a detection with a non-number-resolving detector) resulting in a

Procrustean preparation of the required states (see chapters 2 and 3 for more details).

Following the photon subtraction introduced earlier we can combine our two mode state

with the vacuum at a BS and make a measurement with an APD detector. In the ideal

case, the “click” outcome will be described with the Kraus operator I − |0〉〈0|. We

present these operations both in Hilbert space and in the language of first and second

moments:

Input State

Hilbert space: ρsq ⊗ |0〉〈0|

First and second moments:
−→
d =

−→
0 , γ =



c 0 −s 0 0 0

0 c 0 s 0 0

s 0 c 0 0 0

0 s 0 c 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Where d and γ are the first and second moments (or first moments and covariance

matrix) as introduced in 1.9. Note that the covariance matrix has been defined in terms

of the squeezing parameter r as c = cosh (r), s = sinh (r).
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Beam splitter operation

This operation corresponds to subtracting a photon in one of the modes of the two mode

squeezed state:

Hilbert Space: ρ′ = U (ρsq ⊗ |0〉〈0|)U †

First and second moments: d′ = S
−→
d =

−→
0

γ′ = SγST = 1
2



2 c 0 −
√

2s 0
√

2s 0

0 2 c 0
√

2s 0 −
√

2s

−
√

2s 0 1 + c 0 1− c 0

0
√

2s 0 1 + c 0 1− c
√

2s 0 1− c 0 1 + c 0

0 −
√

2s 0 1− c 0 1 + c



where S6×6 =


I 0 0

0 I I

0 −I I

, meaning I = I2×2.

Note that S is the symplectic transformation corresponding to a BS.

APD measurement

Hilbert space: ρ′′ = Mρ′M†

First and second moments:
−→
d
′′

=?

γ′′ = Shur(γ′) = A− C(B0 + I)+CT ,

where γ′ =


C1

A C2

C3

C1 C2 C3 B0

,
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M := I− |0〉〈0|,

(B0 + I)+ is the Moore-Penrose pseudo-inverse (B.1).

All this gives then in return the first and second moments of our starting states as:

γ′′ =


c− s2

3+c
0 γ′′1,3 0

0 c− s2

3+c
0 γ′′2,4

γ′′3,1 0 1/2 + 1/2 c− 2 (1/2−1/2 c)2

3+c
0

0 γ′′4,2 0 1/2 + 1/2 c− 2 (1/2−1/2 c)2

3+c


−→
d
′′

= 0

With,

γ′′3,1 = γ′′1,3 = −1/2
√

2s−
√

2s(1/2−1/2 c)
3+c

γ′′2,4 = γ′′4,2 = 1/2
√

2s+
√

2s(1/2−1/2 c)
3+c

.

More details about how to describe the measurement results and probabilities in the lan-

guage of moments and covariance matrix for Gaussian states can be found in appendix

B.1. One interesting remark comes when considering the non-Gaussian operation:

ρAB −→ (1I− |0〉〈0|) UρABU
† (1I− |0〉〈0|)

= UρABU
† − 〈0|UρABU †|0〉

= ρ1 − ρ2

Indeed ρ1 and ρ2 are Gaussian when considered separately even though their difference

isn’t. That way, to study the evolution of the non-Gaussian state through the distillation

protocol we could simply keep a list of the evolution of the covariance matrices for each

state in the sum. This decomposition of the non-Gaussian state can help us describe this

evolution.
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2.6.2 Evolution in the Distillation Process

The notation and concepts introduced in the last section can help us describe the evo-

lution of the states through subsequent stages of the protocol. One approach to explore

this case is to try to make one protocol a certain limit of the other. Or possibly, since

we know well the (ρ(i), ρ(i)) protocol with the vacuum projection, trying to decouple the

description of that same protocol from the displacement or squeezing that transforms

|0〉〈0| into say |α〉〈α| or |x〉〈x|.

First and second moments

The map that describes one iteration of the protocol remains almost the same as in

chapter 2, and thus,

ρ(i+1) = 〈ξ|〈ξ| (U ⊗ U) (ρ(i) � ρ(i)) (U ⊗ U)†|ξ〉|ξ〉. (2.17)

We remind that U ⊗ U implement the two beam splitter (BS) operations between the

upper and lower modes and that we measure only the two upper ports of the BSs. In the

above map, the vacuum projection from Eq. (2.1) has been exchanged for the homo-

dyning POVM |ξ〉〈ξ|.

Interestingly, if |ξ〉〈ξ| represents direct homodyning, and therefore the idealized pro-

jection onto a quadrature, its relation to the vacuum projection will be given by the

squeezing and displacement operator:

|ξ〉 = S(s)D(d)|0〉

where s ∈ R − {0} is the squeezing parameter and d the displacement as shown in

Fig.2.19. Let us then look at the case of zero displacement, i.e. only squeezing. Since

BS and squeezing commute, [U, S�S] = 0, then the map from eq. 2.17 can be rewritten

as,
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Figure 2.19: Equivalence of direct homodyning to local squeezing and displacement
before vacuum projection.

Figure 2.20: Equivalence of projecting onto a squeezed vacuum with squeezing the
states and anti-squeezing the output. Here, the gray detector pictured implements the
vacuum projection.

〈ξ|U = 〈0|(S(s)† � 1I)U

= 〈0|(1I� S(s)) U
(
S(s)† � S(s)†

)
.

This expression can be reinterpreted as saying that projecting onto the squeezed vacuum

is equivalent to squeezing the two states coming to the BS and then making an inverse

squeezing operation on the output port. This relation is shown in fig. 2.20.

We may also consider the case of displacement alone. In this case, if the vacuum pro-

jection has a displacement d = (0, 0) in the (x, p) phase-space coordinates, then the

displacement operator shown in fig. 2.19 transforms it to d = (d1, d2). Now the BS’s

symplectic transformation will transform the displacements coming into it’s two ports:
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d = (d1, d2, u1, u2) according to,

d′ =
1

2

 1I 1I

−1I 1I

 dT =


d1 − e1

d2 + e2

e1 − d1

e2 − d2


where 1I are two by two identity matrices. Therefore, if the detected mode has (d1, d2)

and the other mode is empty (0, 0) we can make a displacement before detection equiv-

alent to displacing the states before the BS:

〈0|(D(d)� 1I) U = 〈0|U (D(d/
√

1/2)D(d/
√

1/2)) (2.18)

However, since we don’t know the result of the displacement until it occurs probabilisti-

cally a more interesting question might be, what displacement should we implement to

the output mode to compensate for the one the measurement introduced. The displace-

ments resulting from the detection will depend on the correlations between the bipartite

states and therefore will depend on the second moments. The final first moments for the

bipartite state will then become after measurement of dAB:

d′TAB =
γ2 − γ1

2

(
γ2 − γ1

2
+ 1I4×4

)−1

dTAB (2.19)

That way, one could correct the measured displacement and come back to the results

from the vacuum-projection protocol.

2.6.3 Open Questions

If real-time feedback can be implemented from the measurement results to the output

states this could lead to an Efficient Entanglement Pumping Scheme using Linear Op-

tics. However this is work in progress and a few answers still need to be addressed in

full detail. The full treatment of the evolution of non-Gaussian states through the proto-
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col needs to be made explicit. The full probability calculation is certainly another open

question, although it should be relatively straightforward as detailed in appendix B.1.

Finally, if after i steps we have obtained the normalized state:

ρ(i) =

N(i)∑
j=0

κjρ
(i)
j

Where ρ(i)
j are Gaussian states and

∑N(i)
j=0 κj = 1, then we have a list of covariance

matrices describing the state. How to infer the entanglement content of this state with

that list is still an open question. In other words, providing a table (or expression) which

relates the outcome of any possible homodyne measurements at each iteration with the

entanglement increase is our next goal.

2.7 Open Problems and Conclusion

2.7.1 Conclusions

We have reviewed the ( ρ(i) , ρ(i)) protocol focusing on its weaknesses, particularly

from the point of view of probabilities and use of optical resources. However we have

also presented many avenues for improvement and exploration. We have seen that al-

ternative versions of the protocol can achieve entanglement distillation and that simple

modifications of the non-Gaussian state generation can greatly enhance the probabili-

ties of success. We have studied the properties of the ( ρ(i) , ρ(0)) protocol finding that

it shares the fixed points with the original one but that it’s asymptotic convergence is

still unclear. The way both these protocols distill purity and entanglement greatly de-

pends on the original states, the way we combine them and on the efficiencies and losses

involved. To address this I have shown examples of how the Quantavo Maple proce-

dures can help us assess the suitability of various strategies. Its combination of analytic

and numerical tools allows us to quickly build models with mixed states, imperfect de-

tectors, loss and calculate relevant entanglement measures from it. More details and

calculations about realistic implementations can also be found in chapter 3.
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Figure 2.21: Combining |ψ(i)〉 with |p〉 states

The specific possibilities that CV distillation with LO offers are still largely unexplored

and many variations of the presented protocol can be studied. For example a simple

variation on the original (ρ(i), ρ(i)) protocol is simply feeding a state, different from ρ(0)

in one of the ports of each iteration. This ρ could be the one resulting after one iteration

or an altogether different one obtained for instance from heralded photons, on-demand

photons or other sources different from the ρ(i) we are trying to purify and distill. In

a more general fashion and trying to work around the quick saturation that the ( ρ(i)

, ρ(0)) version exhibits we could use an adaptive ( ρ(i) , σi), where the non-Gaussian

states σi are engineered (adjusting BS and detection events) to continue increasing the

entanglement of the target state. Another area that is promising involves the distillation

of Schrödinger cat states and their behaviour in this setup. Finally the way to mix the

states and the possibility of storage or recycling of unsuccessful events should also be

explored further. As a transition to the next chapter we remind that these protocols work

well even with inefficient detectors but that this imposes constraints on probabilities and

performance. To tackle this problem the use of the very efficient homodyne detection

was suggested in [BESP03, EPB+07] and the first steps towards their use were shown

in this chapter.
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3

First Steps Towards Experimental Pro-

crustean Distillation of Entanglement

In previous chapters we have studied different variations on the distillation protocol

from [BESP03, EBSP04] exploring also how different detection strategies change their

performance. We have explored briefly what resource states (i.e. non-Gaussian states)

are more appropriate to achieve the highest degree of entanglement or entanglement

increase with the protocol. However we have not yet looked in detail at the practical

generation of these states with current technology. Given that the non-Gaussian states

are the cornerstone of the distillation protocols, working towards their practical gener-

ation and manipulation is crucial. Is it possible, with current technology, to implement

simple proof-of-principle experiments on entanglement distillation (ED) in continuous

variables (CV)? I will present in this chapter the calculations and tools necessary to

assess the feasibility of some of these experiments.

3.1 Introduction

Each stage of the distillation protocols presented in chapter 2 above requires the gen-

eration of non-Gaussian states. However that is not the sole motivation to study them.

81



3.1 Introduction

Figure 3.1: At each step of the distillation protocol we must generate non-Gaussian
states. Here we depict a double-photon subtraction setup. The Parametric Down Con-
version (PDC) produces a two mode state. A beam splitter (BS) is placed in each mode
and a photon detected on each reflected path. Imperfect detectors are pictured with a
BS in front of them to account for lost photons.

Non-Gaussian state generation can also shed light on the foundations of quantum optics,

allowing the violation of bell inequalities [LV95, BW99b, BW99a] and providing key

elements for CV quantum computing [LB99, GS07, BS02]. Generating entangled non-

Gaussian states is a difficult task. Most of the standard linear optics tools such as beam

splitters, phase shifters, squeezers or homodyne measurement implement Gaussian op-

erations and therefore preserve the Gaussian character. That implies that using them

on optical squeezed, displaced or coherent states will not result in non-Gaussian states

[GIC02, ESP02a, Fcv02]. Of course some states become non-Gaussian in the process of

decoherence, for example from non-Gaussian phase diffusion [HFD+07]. In that case

the distillation scheme from [BESP03, EBSP04] can purify these non-Gaussian states

and retrieve the original entanglement prior to the de-Gaussification. However we are

more interested in increasing the entanglement of states subject to Gaussian noise or

which have pure Gaussian entanglement to begin with. Generating non-Gaussian states

without deteriorating their entanglement and purity requires then non-linear interac-

tions between photons. While in principle Kerr non-linearities can implement such

interactions the magnitude of the effect is still minuscule. Alternatively measurement

can introduce non-linearities large enough to produce non-Gaussian states as has been
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3.2 Squeezed Vacuum States, How useful are they?

demonstrated experimentally [AOBG07, OTBG06, OTBLG06, ODTBG07, WTFS07].

However increasing entanglement with local operations and classical communication

(LOCC) alone is as yet a standing challenge. For a specific use in distillation of CV

entanglement we have described the generation of non-Gaussian states with the setup

from [EBSP04] depicted in Fig. 2.4. In it, we try to obtain, to a good degree of approx-

imation, a state close to |φ0〉 ∼ |00〉+ µ|11〉 with µ as close to 1 as possible. However,

generating |φ0〉 requires two squeezed vacuum states and the improbable coincident

detection of a photon in each of two detectors. A more sparing setup to generate non-

Gaussian states is for instance the one described in Fig. 3.1. This setup does not require

mode matching two squeezed states but uses a single one instead. Why then has it not

been implemented? Various elements add to the difficulty of a real implementations:

• Inefficient photo-detectors, coupling losses and filtering will introduce mixing

[OP05a, OP05b] (thus reducing the entanglement).

• To rigorously prove an increase in entanglement one has to be able to measure the

amount of entanglement a CV state possesses which is not a trivial task.

I will present some of the calculations and parameter explorations carried out to spur

progress in this area.

3.2 Squeezed Vacuum States, How useful are they?

So far we have described our squeezed vacuum states with
∑

n λ
n|n, n〉. This descrip-

tion makes the implicit assumption that the parametric down conversion process gener-

ates two mode squeezed states. However it is well known that photons produced in PDC

crystals have a richer mode structure [LWE00, LE04, PK05]. The population of orbital

angular momentum and spectral modes therefore affects the photon-number distribu-

tion distinguishing it from the usual two mode description [ACRL+08, WRFB08]. This

implies that for multiphoton realizations involving interference a careful design of the

initial states must be ensured. Fortunately many efforts have been made to address this

problem: The first strategy is to generate the down-converted photons in single-mode
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3.3 Ideal Photon Subtraction

fibres or wave-guides to avoid the spread in free space [FAW+05, AFW+06, FAWR07].

The second strategy involves engineering the spectral mode structure to achieve higher

purity [Mos07, CLS+08, MLSW08]. Finally, and in a different spirit, one can of course

exploit the entanglement and correlations in the other modes. In fact, entanglement

concentration has been shown to be possible with orbital angular momentum from PDC

photons [AJWT+03].

For our calculations we will assume we have a spectrally pure squeezed vacuum state

as in [MLSW08]. Even so there will be sources of mixing in any LO circuit. Indeed

coupling the state to a fibre to implement a BS or for detection as well as filtering will

discard some modes in our state. This effect results in loss of photons and we can there-

fore model it with a BS coupled to the environment. Effectively the mode reflected at

the BS will represent all the modes lost in various filtering processes. The PDC source

that the Ultrafast group at Oxford University could potentially use shows indeed a small

coupling efficiency to single mode fibres. Each PDC beam couples to a fibre with at

most 30% efficiency and we will use this parameter in our mixed state calculations,

exploring if lower or higher efficiencies are respectively tolerable or beneficial.

3.3 Ideal Photon Subtraction

Let us look at the optimal pure case with perfect detection in order to estimate the limits

of this technique.

3.3.1 Starting State

We will assume that the parametric down conversion (PDC) crystal produces a pure

two mode squeezed vacuum state described by |ψλ〉 =
√

1− λ2
∑∞

n=0 λ
n|n, n〉. Its

entanglement can be evaluated with the entropy of entanglement (i.e. the Von Neumann
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entropy of the reduced state):

Sini(λ) = −
∞∑
k=0

λ2k
(
1− λ2

)
log2

(
λ2k
(
1− λ2

))
=

λ2 log2(λ2)

(λ2 − 1)
− log2(1− λ2) (3.1)

or with the Logarithmic Negativity as:

EN(ρ) = log2 ‖ ρΓ ‖1 = log2

(
1 + λ

1− λ

)
(3.2)

Figure 3.2: Perfect double photon subtraction setup

3.3.2 Perfect Double Photon Subtraction

After perfect Photon subtraction in the two branches of M photons:

|ψ′〉 = C

∞∑
j=0

 j +M

j

 µj |j, j〉 (3.3)

|ψ′M=1〉 ∼ |0, 0〉+ 2λT 2|1, 1〉+ 3λ2T 4|2, 2〉+ 4λ3T 6|3, 3〉+ ...

|ψ′M=2〉 ∼ |0, 0〉+ 3λT 2|1, 1〉+ 6λ2T 4|2, 2〉+ 10λ3T 6|3, 3〉+ ...
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where C =

√√√√√√√
(1− µ2)2M+1

∑M
i=0

 M

i

2

µ2i

and µ = λT 2.

Note that the increase in the entanglement is directly reflected in the coefficient trans-

formation : λn −→ (λT 2)n

 n

M


The Logarithmic Negativity then becomes

EN(|ψ′〉〈ψ′|) = log2


(1 + µ)2M+1∑M

i=0

 M

i

2

µ2i

 (1− µ)


(3.4)

With the Von Neumann Entropy becoming:

SM=1(|ψ′〉) =
∞∑
j=0

C2

 j +M

j

2

µ2j log2

C2

 j +M

j

2

µ2j

 (3.5)

≥ − log2

(
(1− µ2)3

µ2 + 1

)
+ 4µ2 (1 + log2(µ))

µ2 + 2

µ4 − 1
(3.6)

(bound by (3.6) for M=1 )

In the next page we plot the entanglement increase for a subtraction BS with trans-

mittivity T = 98%.
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Figure 3.3: Logarithmic Negativity for the perfect subtraction of 1,2 and 3 photons vs.
initial squeezing λ (or x.).

fig. 3.3 (a) shows from bottom to top the curves of the Logarithmic Negativity of the

state before subtraction and after subtraction of M=1, M=2, M=3 photons. The points

over the lines are simulations of these Log Negativities with Quantavo (truncating at 8

photons). They are plotted as a function of the squeezing parameter λ. Fig. 3.3 (b)

shows the ratio EN (M=1)
EN (ini)

,EN (M=2)
EN (ini)

,EN (M=3)
EN (ini)

of these Logarithmic Negativities to find

where the maximum increase can be achieved. We also compare it to the 8 photon

Quantavo simulation.

Fig 3.4 shows: (c) From bottom to top: Von Neumann Entropy of the original state,

analytic bound to the entropy of the subtracted state (M=1 photon) and numerical calcu-

lation of the entropy of the subtracted state. All as a function of λ. And (d), ratios of the

Entropies. We must note that even though the highest increase in entanglement occurs

at low λ-s, the magnitude is very small and could most likely not be measured. The best

we can hope for is around a 3 fold increase of entanglement. Let us then address the

problems of inefficient detectors, coupling losses and reasonable probabilities.
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Figure 3.4: Entropy of Entanglement after subtraction of one photon in both branches
of the parametric down conversion as shown in Fig. 3.3.

3.3.3 Inefficient fibre coupling and lossy imperfect detectors

To make a more realistic description I have explored various degrees of approximation

and realism. I have also explored a variety of setups. All the following cases and

combinations thereof have been studied:

• Using APDs or TMDs for subtraction.

• Recording one click, zero clicks, two or three clicks (in a single TMD), one and

zero, etc

• modelling the BS as working perfectly in free space or as being in a fibre and

therefore with an inefficient coupling from the crystal.

• Using ideal detectors, rough imperfect detector models or using a full characteri-

zation of both APDs and TMDs.

In more detail, if we want to couple the down converted photons to a single mode

fibre, then many modes populated in the squeezed state will be filtered out. Since it is a

passive linear optics element it will effectively make a mode transformation equivalent

to a BS. Of course we have to make sure that this description of loss is appropriate. A
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(a) (b) (c)

Figure 3.5: Different photon-subtraction setups. (a) Single subtraction in free space
with perfect detectors. (b) Double subtraction in free space with lossy detectors. (c)
Double subtraction in optical fibre with accurate model of the detector’s POVMs.

frequency dependent filter (therefore non-energy preserving and outside of linear optics)

would introduce a different kind of loss. For the detection after the subtraction we used

various models for the TMD and APD. More importantly due to the important role that

their loss can play in mixing the subtracted state we performed a full characterization of

them as discussed in chapter 4.

Describing the state which is the output of the circuit in figure (3.5-c) soon becomes

difficult in the Foch basis. For instance, if we start with the truncated state |00〉 +

λ|11〉 + λ2|22〉 + λ3|33〉 then, in the output, the coefficient of |00〉〈00| is a polynomial

with 126 terms in T : transmittivity of the subtracting BS, η: efficiency of the fibre cou-

pling, λ: squeezing parameter, α: inefficiency of the detector.

To describe this evolution we simply used the Maple Module Quantavo and evalu-

ated the probabilities and Log Negativity with it. We have seen in the previous section

that these simulations give good lower bounds for the squeezing range 0 < λ < 0.3

which is our working range anyway.
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Figure 3.6: Logarithmic Negativity vs. coupling efficiency η (such that η = 1/2 is a
50/50 BS) for 3.5-c. The red horizontal line represents the entanglement of the origi-
nal squeezed state with (lambda=0.1). The vertical red line is a possible value of the
coupling (40%). The lowest CROSSES curve is the exact Log-Negativity once the state
is in the fibre. The DIAMONDS curve is the exact Log-Negativity after subtraction of
one photon (the detector considered is the real detector described by the POVM pro-
vided by the tomography). The BLUE DOTS are the Log Negativity that a state with
the same mean energy as the state in the fibre (before subtraction) would have, if it had
the maximum achievable Log-Negativity.

Coupling to Fibre

An important lesson about coupling to fibres is that the initial entanglement will not

increase for current efficiencies. The entanglement from the original state will be di-

minished by the filtering (and mixing) process the fibre introduces. Once in the fibre,

the subtraction will however enhance this entanglement. A fair comparison would be

to measure the mean energy a state has after coupling to the fibre deducing an upper

bound to the entanglement. To obtain this upper bound consider |fib〉 to be the state

in the fibre (prior to subtraction). If Ẽfib = 〈fib|E|fib〉 is its mean energy then one

can define |ψε〉 =
√

1− ε2
∑∞

n=0 ε
n|n, n〉 such that Ẽfib = 〈ψε|E|ψε〉. This quantity is

plotted in blue in fig. 3.7. It is precisely that quantity which could be compared with the

lower bound on entanglement found after subtraction. Obtaining this lower bound will
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be discussed further down (3.5).

3.4 Chosen Subtraction Setup

T=60%

t
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LogNegativity vs Subtraction-BS Transmittivity

Figure 3.7: Logarithmic Negativity vs. the reflectivity t2 of the subtracting BS. (sin-
gle detection in one branch only). The blue curves show the Log-Negativity for ini-
tial squeezing of λ = 0.2. The horizontal blue one shows EN for the squeezed state,
while the upper one corresponds to a subtraction with detector efficiency of 90% and
the lower one of 20%. The three red curves show respectively the Log-Negativity for
initial squeezing of λ = 0.1. (Horizontal=initial, upper= 90% efficiency, lower= 20%
efficiency).

In the near future it is our hope to be able to implement the setup we found to be the

most advantageous: subtracting a single photon in free space. We would use a squeezed

state with squeezing parameter near λ = 0.2. The fibre coupling to the APD detecting

the subtracted photon has close to 30% efficiency, and the APD’s efficiency close to

50%. Combined, this implies a detector with 85% loss. However, for a free space sub-

traction the efficiency of the detector or of the coupling to it will be largely irrelevant.

That is, concerning entanglement increase but not probability. This can be interpreted
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3.5 Entanglement Quantification

as follows: when a click occurs, it does not matter much if the implemented POVM is∑∞
n=1 |n〉〈n| or

∑∞
n=1(1 − r2n)|n〉〈n| (r2 being the reflectivity of the interposed BS).

Since the subtracting BS only diverted a small part of the state, and higher photon num-

bers have low amplitudes in the state, the mixing for any r2 will be similar. Informally

said our detector doesn’t work very often, but when it works it does its job well enough.

The efficiency will of course make itself apparent reducing the probabilities of a click.

However, for a 250kHz pulsed laser, with an 80% transmitting BS and an 15% efficient

detector we get of the order of 1300 successful subtractions per second. This rate is of

course important for the next step: estimating the entanglement of the subtracted state.

3.5 Entanglement Quantification

In the continuous variable domain any reconstruction of the (infinite) density matrix will

always be incomplete for obvious reasons. The so called full reconstructions performed

with strong homodyne tomography are of course also limited by their finite phase space

resolution and Hilbert space truncation [RHKL07, HMR06]. For these and other situ-

ations without full tomographic knowledge about the state a variety of tools have been

developed [EBA07, GRW08, GRW07, AP06]. The spirit is the following: Given the

statistics from a set of measurements on a state, what is the least entangled state con-

sistent with this data. This contrasts with studying partial correlations or making a

maximum likelihood estimate from incomplete data which can lead to an overestimate

of the entanglement. Finding the least entangled state consistent with the measured

statistics also called “quantitative entanglement witnesses” is therefore a very rigorous

and sure way to assess the entanglement in a CV state providing a lower bound to it.

The question can of course be recast as a simple optimization:

Given an entanglement measure E find the ρ which minimizes E(ρ) subject to ρ being

consistent with the measured data.

Of course this procedure can help us decide which observables to measure in order
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to get the tightest lower bound for the entanglement generated. In more detail let us as-

sume we measure certain probabilities {p1, . . . , pn} for certain measurement operators

M1, . . . ,Mn, meaning that

〈Mi〉 = Tr {Mi ρ} = pi (3.7)

For a bi-partite state, Mi is a witness if for all separable states

tr[Miρ] ≥ 0, (3.8)

and at least for a single entangled state ρ, one finds that [Ter00, HHH96]

tr[Miρ] < 0. (3.9)

(which works because the separable states form a convex set). In our case we will be

interested in using the Logarithmic negativity and therefore in solving the problem

EN,min = inf
ρ

‖ρΓ‖1 (3.10)

subject to tr[ρMi] = pi, ρ ≥ 0 and Tr {ρ = 1}

However, thanks to a property of the trace norm, ||A||1 = max||X||∞ [Tr {X A}] we

can recast the minimization in the form

EN,min = inf
ρ

max||X||∞=1 [Tr {X ρ}] (3.11)

subject to ||X||∞ = 1 , and

tr[ρMi] = pi, ρ ≥ 0 and Tr {ρ = 1}

Since the Log-Negativity is found maximizing over theX , anyX observing ||X||∞ = 1
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will provide a lower bound to it:

EN,min ≥ inf
ρ

Tr {X ρ} (3.12)

tr[ρMi] = pi, ρ ≥ 0 and Tr {ρ = 1}

Now an interesting choice of a suitableX is a linear combination of the partial-transposed

measured witnesses [EBA07],

X =
n∑
i=1

αiM
Γ
i + αn+11I

with αi ∈ R. This is so because,

Tr {X ρ} =
n∑
i=1

αi Tr
{
MΓ

i ρ
Γ
}

+ αn+1 =
n∑
i=1

αipi + αn+1

and there is therefore nothing to minimize in infρ. Finding a good lower bound toEN,min

can then be translated to finding a set of real {αi} such that:

max
n∑
i=1

αipi + αn+1, (3.13)

subject to −1I ≤ X ≤ 1I,

X =
n∑
i=1

αiM
Γ
i + αn+11I,

which is a semi-definite-optimization problem (and therefore one that can be efficiently

computed). This is then the tool we could use to characterize the entanglement in our

subtracted state. Of course If we want to “prove rigorously” an increase in entanglement

we should provide:

1. for the squeezed state before subtraction an upper bound on the Log-Negativity

(or other Entanglement measure)

2. for the squeezed state after subtraction a lower bound on the Log-Negativity (or

other Entanglement measure).
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To obtain (1) all we need to do is measure the average photon number of the squeezed

state. Indeed if our initial squeezed state is some unknown ρ0 we can measure the ex-

pected value of the energy µ0 = Tr {Eρ0}. Associated with this energy there is only

one pure state which has maximum entanglement and that is the pure squeezed vac-

uum state |Sq〉 =
√

1− λ2
∑
λn|n, n〉. This state itself has 〈Sq|E|Sq〉 =

(
1+λ2

1−λ2

)
~ω
2

.

Therefore, solving µ0 =
(

1+λ2

1−λ2

)
~ω
2

we find the maximum squeezing consistent with

that energy and therefore the upper bound to the entanglement.

To obtain (2) we need to choose some appropriate POVMs, measure the state with them

and from 3.13 find the lower bound. Of course there might not be enough entanglement

to begin with in the mixed squeezed state due to various inefficiencies in which case the

increase also would not be that dramatic and the bounds might not be far apart enough.

However, given the simplicity of the method (measuring average photon number) and

the possibility of such a robust result it should be the first approach to the problem. If

this proves to be insufficient then one may have to do tomography of the state before

subtraction together with some assumptions on the energy of the state. Of course it is

impossible to do tomography beyond say 7 photons for which (in our case) detection of

7 photons would occur once or twice a day. Of course it is reasonable to make some

assumptions about the decay of the probability amplitude beyond those Fock layers (and

therefore about the Entanglement they might contain).

3.6 Characterization Strategy

As we have seen entanglement witnesses give us the advantage of not needing full to-

mography. This can make experiments faster, easier and result in rigorous outcomes.

The advent of advanced photon number resolving detection has spurred interest in re-

constructing directly the density operator of optical states. Beyond measuring quasi-

probability distributions and reconstructing the density matrix there have been sugges-

tions to measure directly the matrix elements [SV95]. That approach however requires

superpositions of Fock states |M〉, |N〉 to characterize the elements ρN,M . Other more
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Figure 3.8: Weak-homodyning with a weak coherent local oscillator (providing the
phase reference) and two time multiplexing detectors.

realistic proposals involve weak homodyning [PP02]. In this approach the state to be

measured is mixed at a BS with a weak local oscillator. The photon number is mea-

sured in the two out-coming modes. Adapting the phase of the local oscillator and with

the photon number measurements one can effectively reconstruct the ρN,M elements in

principle. Real TMDs, however won’t implement exactly the |n〉〈n| POVM but some

mixture of photon numbers. To know if the POVMs from such an imperfect detector

are sufficient to build the appropriate entanglement witnesses we need an accurate de-

scription of them. This is thoroughly addressed in chapter 4.

Our findings reveal that the POVMs implemented by imperfect TMDs with a phase

reference are sufficient to provide a tight bound within a few percent of the real Log-

Negativity value. A setup as shown in fig. 3.9 should then represent a feasible experi-

ment. This makes it a very promising avenue for non-Gaussian state preparation using

LOCC as well as for CV distillation of entanglement with linear optics.
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Figure 3.9: Subtraction setup with one subtraction (BS+APD) and the subsequent char-
acterization. In this case we show on each side of the subtracted state weak-homodyning
with a local oscillator and time multiplexing detectors).
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4

Detector Tomography

Quantum measurement is our window to the microscopic quantum realm. Conversely,

preparing a particular quantum state amounts to performing filtering measurements

[Hel76]. Surprisingly – in the light of the central status of measurement in quantum

mechanics – the characterisation of detectors has typically been based on partial cali-

brations or elaborate models invoking several assumptions. There exist recipes to create

optical measurement apparatuses based on a few building blocks such as beam split-

ters, photon-number detectors and local oscillators [PP02, Pre05]. However there is no

recipe for arranging matter (and eventually an apparatus) that implements those building

blocks (and therefore a specific observable). In this chapter a direct and full character-

isation tries to assume as little as possible about the detector presenting a substantially

different strategy.

In our particular case, when implementing a photon subtraction and using entangle-

ment witnesses, the role of well known detectors is crucial. By subtracting a number of

photons we are preparing a state, and therefore characterising the detector tells us what

state we are preparing. Furthermore, the use of entanglement witnesses as presented in

chapter 3 can only be accurate if the operators describing those witnesses are correct.
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Here we present the first experimental realisation of quantum detector tomography

[LSS99, Fcv01, DMP04]. This result completes the triad of experimental state [VR89,

SBRF93, BRWKan99], process[CN96, PCZ97, DM98, ABJ+03], and detector tomog-

raphy [LFCR+08]. We therefore identify the physical positive-operator-valued mea-

sures closest to the experimental data without any assumptions on the functioning of the

detectors. This is done for an avalanche photodiode and a photon number resolving de-

tector able to detect up to 8 photons[ASS+03a]. This detector characterisation opens up

more flexible and complex ways of detecting quantum states and accurately preparing

non-classical light.

4.1 Introduction

The quantum properties of nature reveal themselves only to carefully designed mea-

surement techniques[KJRPG+07, HBB+07]. In addition, most quantum information

applications both computational and cryptographic, rely on a certain knowledge of

the measurement apparatuses involved [RB02, Nie03]. But most importantly the as-

sumption of a fully characterised detector completely underlies both quantum state

tomography (QST) and quantum process tomography (QPT). In QST a given num-

ber of measurements on many copies of an unknown state reveal its density operator

[VR89, SBRF93, BRWKan99]. Characterising the operators that govern an evolution

or a channel – QPT – amounts to acting the process on a set of input states, and subse-

quently fully characterising the output states [CN96, PCZ97, DM98, ABJ+03].

In addition as quantum technology makes striking advances, detectors are becoming

more complex calling for a black box approach to their characterisation. Photo-detection

has seen the advent of single-carbon-nanotube detectors [FMM+03], charge integration

photon detectors (CIPD) [SWM+04], Visible Light Photon Counters (VLPC) [KTYH99],

quantum dot arrays [SOF+00], superconducting edge and picosecond sensors[MNMS03,

GOC+01] or time multiplexing detectors based on commercial Si-APDs [ASS+03a,

ASS+03b]. Certainly understanding in full detail the noise, loss and coherence charac-
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teristics of these technologies is not trivial. Detector tomography is an answer to those

challenges. With ever increasing non-classical states and channels studied and prepared

with ever more elaborate detectors, detector tomography imposes itself. State and de-

tector tomography evidently exhibit a dual role: Either the input is well-known and

the detector is to be characterised, or the detector is well-known and the state is tomo-

graphically reconstructed. Building upon previous theoretical descriptions of detector

tomography [LSS99, Fcv01, DMP04] and using methods of convex optimisation[BV04]

we develop a framework in which this reconstruction can be carried out by means of ef-

ficient and simple numerics.

Any detector in quantum mechanics is described by a positive operator valued measure

(POVM) {πn} where the outcomes are labelled by n. When these operators are orthog-

onal this generalisation simplifies to the projective measurement case, πn = |ψn〉〈ψn|

of which a perfect photon counter with πn = |n〉〈n| is an example. For these opera-

tors to describe a physical measurement apparatus, they must be positive semi-definite,

πn ≥ 0, and
∑

n πn = 1I, ensuring positive probabilities that add up to one. Given an

input ρ, the probability pn of obtaining output n is then

pρ,n = tr[ρ πn]. (4.1)

To recover the POVM elements {πn} from the measured statistics pn,ρ the probe states

or input states must be carefully chosen. Indeed the set {ρ} must to be tomographically

complete: the operators {ρ} must form a basis for the operator space of πn.When doing

state tomography, one must perform a set of measurements {πn} spanning the space of

the density operator to be reconstructed. If the state lives in N dimensions, then this

space will have N2 − 1 parameters (where one is subtracted to account for the normali-

sation). Conversely, for detector tomography, the reference states { ρ} need to span the

space of the POVM set. A spanning set will necessarily have N2 elements or more in

it, depending on how many outcomes the measurement has.

100



4.1 Introduction

In principle this is sufficient to calculate the direct inversion of Eq. (4.1). However

an experimental realisation carries additional requirements. On the one hand the probe

states should be previously characterised, and large numbers of them should be eas-

ily generated. Coherent states are ideal candidates since a laser can generate them di-

rectly and we can create a tomographically complete set by transforming their amplitude

through attenuation (for example with a beam splitter). Using input states {|α〉〈α|} one

can then reconstruct the Q-function of the detector [LSS99] which is simply propor-

tional to the measured statistics,

pn,α =
1

π2
〈α|πn|α〉 =

1

π
Qn(α). (4.2)

Since Qn(α) of each POVM contains the same information as the element πn itself,

predictions of the detection probabilities for arbitrary input states can then be calculated

directly from the Q-function. However experimental errors and statistical fluctuations

can cause a simple fit to the Q-function to be consistent with unphysical POVM ele-

ments. Due to this and because our detectors extract photon number information, we

ultimately seek a physical and natural representation in the photon-number basis, i.e.

the POVM elements.

4.1.1 The Experiment

We now turn to the description of the experimental realisation, shown in Fig. 4.1. The

idea is simply to send coherent states with different amplitudes to the detectors and

record all corresponding outcomes. To do so the coherent states were measured with

a NIST calibrated power-meter. Part of the beam going to the power-meter was split

and then attenuated with Neutral Density filters before entering the coupling fibre and

the detector. The attenuation introduced by the different elements (BS, ND filters) was

measured and the value of |α2| derived.
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λ/2 PBS

Laser

NDF

T~1

FC
Unknown
detector

Power meter

Figure 4.1: The experimental setup. A half-waveplate (λ/2) and Glan-Thompson po-
lariser (PBS) are used to vary the amplitude of the probe coherent state, which is subse-
quently attenuated by Neutral Density Filters (NDF) and coupled into a fibre (FC).

4.2 The Detectors

APD

The first detector was a commercial single-photon counting module based on a silicon

avalanche photodiode (APD). It has two detection outcomes, either outputting an elec-

tronic pulse (1-click) or not (0-clicks). A loss-free perfect version of it would implement

the Kraus operators {|0〉〈0|, 1I−|0〉〈0|}, distinguishing between the presence or absence

of photons. However some photons are absorbed without triggering a pulse. This loss

can be modelled placing a BS in front of the perfect detector [U.L03]. The POVMs

describing a detector with a BS of transmittivity η can then be written as,

NO CLICK : π0 =
∞∑
n=0

(1− η)n |n〉 〈n| , (4.3)

CLICK : π1 = 1I−
∞∑
n=0

(1− η)n |n〉 〈n| . (4.4)

disregarding after-pulsing or dark counts [CRS07]. Having only two outcomes, this

detector cannot distinguish the number of photons present.
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4.2 The Detectors

TMD

The second detector on the other hand has certain photon-number resolution. It obtains

this resolution splitting the incoming pulse into many spatially or temporally separate

bins, making unlikely the presence of more than one photon per bin. All the time bins

are then detected with two APDs. Photon-number resolution results by summing the

number of 1-click outcomes from all the bins. This time-multiplexed detector (TMD)

is not commercially available but was constructed by the Ultrafast Group in Oxford

[ASS+03a]. It had eight bins in total (four time bins in each of two output fibres) and

thus nine outcomes – from zero to eight clicks. The added complexity and greater num-

ber of outcomes made detector tomography more interesting on this particular detector.

The theoretical description of this detector is a bit more involved since there is what

we call the “binning problem”. Indeed, in addition to loss there is a certain probability

that all photons will end up in a single time bin, or more generally that k incoming

photons will result in less than k clicks. To account for the details describing these

probabilities we use a recursive relation [Ple07]. Our goal is to describe the probability

distribution:

PN(j/k): Probability of having j-Clicks given that there were k incident photons and

that the detector has N-bins (or modes).

We will show how to calculate P 2(j/k), P 4(j/k) and then how to go from PN(j/k)

to P 2N(j/k). For a two-bin loopy detector as shown in Fig. 4.2 the relation is quite

simple. If we consider a BS with transmittivity T and reflectivity R, then:

• P 2(j, 0) = δj,0 (if no photons are present we will only register zero clicks).

• P 2(1, k) = T k + Rk (with probability T k, k photons end up in the lower bin and

the same holds for the upper bin with Rk. The probability of a single click is the

sum of these independent probabilities).
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4.2 The Detectors

• P 2(2, k) = 1− T k +Rk (if k 6= 0 then only two events may happen: one click or

two. This complementary event has therefore P = 1 - (Probability of 1 click).)

Figure 4.2: Diagram of a simplified 2 bin multiplexing detector.

In the case of a 4-bin detector shown in fig. 4.3, k incoming photons are distributed

to two 2-bin detectors according to a binomial distribution. Now let us evaluate the

Figure 4.3: Diagram of a simplified 4 bin multiplexing detector. The first beam splitter
distributes k photons according to a binomial distribution between the two 2-bin loopy
detectors of the second stage.

probability for the upper 2-bin detector to register s counts if x photons entered while

registering m clicks in the lower 2-bin detector if k − x entered the lower port. This

should be P 2(s, x)P 2(m, k − x) weighted by the probability that x photons enter the

upper branch and k − x the lower one:
(
k
x

)
T k−xRx.

Now the probability that j counts are found overall is found summing the weighted

probability over all possible ways that the detectors can find j counts (i.e. m + s = j)
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4.2 The Detectors

and summing over all possible ways of distributing k photons:

P 4(j/k) =
k∑
x=0

∑
m+s=j

(
k

x

)
T k−xRxP 2(s, x)P 2(m, k − x). (4.5)

Figure 4.4: Diagram of a 2N bin multiplexing detector. The first beam splitter dis-
tributes k photons according to a binomial distribution between the two next Nbin
stages.

We can extend the same argument to 2N . Imagine we know PN(j/k). Now, for that

detector to become a 2N -bin detector all we need is to couple two of them to a beam

splitter which will distribute the k photons as described above and as shown in Fig. 4.4.

In that same fashion we can then define the recursive relation [Ple07]:

P 2N(j/k) =
k∑
x=0

∑
m+s=j

(
k

x

)
T k−xRxPN(s, x)PN(m, k − x). (4.6)

Based on this recursion and once we determine all T and R, we can write a simple
program to generate the corresponding theoretical POVMs. For example a 5-outcome
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4.2 The Detectors

detector would have a POVM which can be captured in the following matrix:

B =



π0 π1 π2 π3 π4 π5

|0〉〈0| 1 0 0 0 0 0

|1〉〈1| 0 1 0 0 0 0

|2〉〈2| 0 0.12828 0.87172 0 0 0

|3〉〈3| 0 0.016857 0.33428 0.64886 0 0

|4〉〈4| 0 0.0022626 0.10096 0.49583 0.40094 0

|5〉〈5| 0 0.00030921 0.0283 0.26519 0.50875 0.19744

|6〉〈6| 0 0.000042885 0.0077213 0.12337 0.42183 0.44704

|7〉〈7| 0 0.000006018 0.002089 0.05363 0.29105 0.65323

|8〉〈8| 0 0.00000085224 0.00056503 0.022492 0.18197 0.79497


whereBk,j = P 5(j/k) and j runs from {0→ 5} and k from {0→ 8} . for example the

5-click event has a POVM element, π5 ' 0.2|5〉〈5|+ 0.4|6〉〈6|+ 0.6|7〉〈7|+ 0.8|8〉〈8|,

etc. More generally, the measured statistics are related to the incoming photons by

pj =
∑
k

PN(j/k)ρk

where pj is the probability of detecting j counts and ρk the probability that k photons

arrived to the TMD. This relation can be cast into matrix form becoming p = B · ρ

[ASS+03b].

Loss: TMD detectors have various sources of loss (meaning that photons are absorbed

before triggering a detection event). The major sources of loss are the coupling to the

fibres, the absorption and scattering in the delay fibres and the non-unit efficiency of

the detectors [ASW06]. A full description of the effect of losses is certainly complex,

since loss occurs at many stages of the detector. One would have to include a BS be-

fore the detector (fibre coupling), a BS at each stage of fibre and a BS in front of each

APD, altering Eq. (4.6) accordingly. Instead we chose to give an effective description
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4.3 Reconstruction

which describes loss with a single BS in front of the detector. Disregarding the ‘binning

problem’, a BS in front of a perfect number detector with πn = |n〉〈n| would result in a

relationship between statistics and incoming photons of the form,

p = L · ρ

This time with Lk′,k =
(
k
k′

)
ηk
′
(1−η)k−k

′ being the binomial distribution accounting for

loss since Lk′,k = 0 for all k < k′. Now combining both descriptions, we can decouple

the loss from the binning, putting a BS coupled to the environment before the N-bin

TMD resulting in:

p = B · L · ρ. (4.7)

This relationship expresses how the incoming photons experience loss and then are dis-

tributed among the available modes. This is the model we will use to describe the TMD

sketched in Fig. 4.5. The transmittivities of the inner BS were measured independently,

and from them we obtained the corresponding ‘binning matrix’ B. Overall loss was

estimated from the tomography data to achieve the best fit to the POVMs.

Figure 4.5: Diagram of a simplified 8 bin time multiplexing detector (TMD). The
spirals represent a delay in the optical fibre.

4.3 Reconstruction

We now turn to the tomographic reconstruction. Since we adopt a ‘black box’ approach

we need not assume any of the properties studied in the previous section. Only the

accessible parts of the ‘black box’ will condition the description of our detector, i.e.
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4.3 Reconstruction

number of outcomes or control of phase. For both detectors we first allowed the phase

of α to drift observing no variation in the outcome frequencies, as expected from a de-

tector without a phase-reference. This simplifies the experimental procedure, allowing

us to solely control the magnitude of α (as was done for tomography of a single pho-

ton [LHA+01]). A detector with no observed phase dependence will be described by

POVM elements diagonal in the number basis,

πn =
∞∑
k=0

θ
(n)
k |k〉〈k|, (4.8)

hence simplifying the reconstruction of πn.

For a diagonal πn, measuring the statistics for D different values of α, α1 . . . αD,

and truncating the number states at a sufficiently large M , we can rewrite Eq. 4.2 as,

P̃ = F Π. (4.9)

Where we have taken:

P (n)(α) = 〈α| Π̂(n)|α〉

= 〈α|

(∑
k

θ
(n)
k |k〉〈k|

)
|α〉

= e−|α|
2
∑
k

|α|2k

k!
θ

(n)
k

=
∑
k

Fk(α)θ
(n)
k

= F̂ (α)Π̂(n)

For anN outcome detector, the matrices will have dimensions PD×N , FD×M and ΠM×N .

In addition Fi,k = |αi|2k exp (−|αi|2)
k!

can easily be rewritten when the input state is a mixed

state. This was done indeed to account for the laser’s technical noise (as we will see in

4.4.2) but gave similar results. For such a detector, the physical POVM consistent with
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Figure 4.6: The measured probabilities for different photon numbers are shown (red
dots) as a function of |α|2 = 〈n〉. The main plot shows the time multiplexed detector
(TMD) with 9 time-bins and the upper right corner shows the measured probability
distribution for the avalanche photodiode (APD). The statistical error vertically is too
small to be seen and the jitter of |α|2 was estimated to be 2% of its value. An additional
5% systematic error in the calibration of the power meter is present but can be absorbed
as loss. From the reconstructed POVM elements {πn} we generate the corresponding
probability distributions Tr[ρ

(in)
α πn] (blue curves). These are generated for pure |α〉〈α|

or mixed ρ(in)
α and for πn reconstructed with the filter function in Eq. or without it. For

all these options, the probability distributions (blue lines) are so similar that they are
indistinguishable on this scale.
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4.3 Reconstruction

the data can be estimated through the following optimisation problem:

min
{
||P̃ − FΠ||2 + g(Π)

}
,

subject to πn ≥ 0,
N∑
n=1

πn = 1, (4.10)

where the 2-norm of a matrix A is defined as ||A||2 = (
∑

i,j |Ai,j|2)1/2 and ensures it’s a

convex quadratic problem. Note that we also allow for convex quadratic filter functions

g, related to the conditioning of the problem, which must not depend on the type of

detector. For example, no symmetry or knowledge of the typical POVM structures in

photo-detection can be assumed. If any, only general regularization functions that would

work for any POVM should be chosen. Since this is a convex quadratic optimisation

problem, and hence also a semi-definite problem (SDP) which can be efficiently solved

numerically [BV04]. Moreover, in this case, there exists a dual optimisation problem

whose solution coincides with the original problem. Thus, the dual problem provides a

certificate of optimality since it provides a lower bound to the primal problem.

Care has to be taken that the optimisation problem is well conditioned in order to find

the true POVM of the detector. In finding the number basis representation we are de-

convolving a coherent state from our statistics which is intrinsically badly conditioned.

Similar issues of conditioning have been discussed in the context of state and process

tomography, see e.g. Refs. [BHPC03, JcvFcvH03]. Due to a large ratio between the

largest and smallest singular values of the matrices defining the quadratic problem,

small fluctuations in the probability distribution can result in large variations for the

reconstructed POVM. This can result in operators that approximate really well the out-

come statistics and yet do not exhibit a smooth distribution in photon-number. We will

discuss how to treat his problem in 4.4.3.

The measured probabilities for each outcome as a function of |α|2 are displayed in

Fig. 4.6. The probability distributions (equivalent modulo 1/π to the Q-function of the
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Figure 4.7: Reconstructed POVMs for (a) the photon-number resolving TMD and (b)
the APD “yes/no” detector. TMD POVMs were obtained up to element |60〉〈60| (there-
fore M=60), but are shown up to |30〉〈30| for display purposes. APD POVMs are
shown in full. Stacked on top of each θ(n)

i where n is the number of clicks we show
|θn(rec)
i − θ

n(teo)
i | in yellow. “rec” stands for reconstructed and (teo) is the theoretical

POVM expected from (a) a TMD modelled with 3 beam splitters of measured reflectiv-
ities and 52.1% overall loss (b) a theoretical APD with 43.2% loss respectively.
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detector) show smooth profiles and distinct photon number ranges of sensitivity for in-

creasing number of clicks in the detector. Fig. 4.7 shows the POVMs that result from

the Eq. 4.10 optimisation which we will discuss later. A first remarkable property is

that πn, being the POVM for n clicks, shows zero amplitude for detecting less than n

photons. That is, the detector shows essentially no dark counts. This however was not

assumed anywhere and is purely the result of the optimization. This sharp feature gives

the detector its discriminatory power where n clicks means at least n photons in the

input pulse.

To assess the performance of our method we compare it to the model described in the

previous section. This time however, the BS used in the model are not 50/50 but its

reflectivities (R=[0.5018, 0.5060, 0.4192]) were measured experimentally. The yellow

bars in Fig. 4.7, show the absolute value of the difference between the theoretical and

the reconstructed POVM elements. The magnitude

∆
(n,i)
θ = |θn,teoi − θn,reci |

is shown stacked on top of each coefficient of the POVM elements where teo stands for

theoretical and rec for reconstructed. The small yellow bars reveal a good agreement

with the model. We also calculate the fidelity finding that

F = Tr

{(√
πteo
n πrec

n

√
πteo
n

) 1
2

}2

≥ 98.7%

holds for all n, indicating excellent agreement between the two.

In addition, one can reconstruct a probability distribution: from the found POVMs to

fit the data. The reconstruction is plotted as blue curves in Fig. 4.6. It is the equiva-

lent of the Q-function had our probe states |α〉〈α| been strictly pure. In fact, although

formally distinct, the probability distribution associated with the reconstructed POVM

using mixed or pure states are practically indistinguishable and are plotted together in
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Fig. 4.6 for comparison.

4.3.1 Detector Wigner Functions

An alternative representation of the detectors which can give us more insight about their

structure comes from the quasi-probability distributions such as the Wigner Function

[Leo97, Sch01]. Since the POVM elements πn are self adjoint positive-semi-definite

operators the Wigner functionWn can be calculated in the standard way from the POVM

element πn:

Wn(x, p) =
1

π~

∫ ∞
−∞

dy 〈x− y|πn|x+ y〉e2ipy/~. (4.11)

However, since the POVMs do not have trace one, this detector Wigner function will

not be normalised, ∫ ∞
−∞

dx

∫ ∞
−∞

dp Wn(x, p) < 1. (4.12)

We should note that the marginals cannot be interpreted as probability distributions but

we can still use Wn to calculate probabilities according to:

Pn,ρ = Tr(ρ̂πn) =

∫ ∞
−∞

dx

∫ ∞
−∞

dp Wρ(x, p)Wn(x, p). (4.13)

We plot the Wigner functions of the ‘one click ’ Operator for the TMD and the

‘click ’ operator for the APD in Fig. 4.8. It is remarkable to see the similarities of the

‘one click ’ POVM with its state counterpart: the single photon Wigner function. The

APD however displays the contributions from higher photon numbers but still exhibits

negative values at the origin. Since none of the detectors have phase sensitivity their

Wigner functions are rotationally symmetric around a vertical axis through the origin.

In Figures 4.9 and 4.10 we display a cut of the TMD Wigner function for the following

POVM elements: {π0, π1, π2, π3, π4, π5}. The interesting feature about the plot is the

comparison with the theoretical TMD Wigner functions from section 4.2 and the effect
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Figure 4.8: Wigner quasi-probability distributions for the ‘one click’ event on a TMD
(a) and ‘click event’ on the APD (b) [LFCR+08]. From the diagonal POVM elements
of the detectors one can easily generate the Wigner representation. An APD detector
is sometimes regarded as a ‘single photon detector’ but here we can see the striking
difference between the Wigner function of a ‘one click’ event on a TMD and the Wigner
function of the ‘click event’ on the APD. Indeed the POVM element corresponding to
(a) has a fidelity of 99% with a single photon having experienced loss on a 48% beam
splitter. It is worth noting that both functions have negative values near the origin,
emphasizing the absence of a classical analogue.
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Figure 4.9: Wigner function of the first POVM elements of the TMD. Since the de-
tectors have no phase reference, their Wigner functions are rotationally symmetric with
respect to their center and a cut contains all the information. The dotted blue curve
represents the Wigner function of the reconstructed POVMs from 0 to 5 clicks. In red
we can see the theoretical Wigner function for a theoretical TMD with 52% loss.
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Figure 4.10: Wigner function of the first POVM elements of the TMD. Since the de-
tectors have no phase reference, their Wigner functions are rotationally symmetric with
respect to their center and a cut contains all the information. The dotted blue curve rep-
resents the Wigner function of the reconstructed POVMs from 0 to 5 clicks. In red we
can see the theoretical Wigner function for a theoretical TMD without loss. Paying at-
tention to the scale we observe how dramatic the effect of loss is at damping the ripples
in the Wigner function.

of loss. Indeed comparing a theoretical loss-less TMD with the measured one we see

how the amplitude of the Wigner function decreases rapidly for higher photon num-

bers. On the other hand, comparison with the lossy theoretical model reveals a good

agreement.

4.4 Ill Conditioning and Regularisation

One of the main problems encountered in the tomographic characterisation of the detec-

tors has to do with the numerical reconstruction. Such problems are common in tomog-

raphy [BHPC03, JcvFcvH03]. Consider for example the transformations involved in

the inverse Radon transform and their inherent instabilities . Note also how going from

116



4.4 Ill Conditioning and Regularisation

the Q-function to the P-function is not always well defined [Sch01]. Multiple tools exist

to bridge the link between homodyne tomography and the density matrix description

[LR05]. One of them involves the use of pattern functions [DLP95, LPD95, Wün97].

That is, finding some functions Gk(α) such that,

∫
Q(n)(α) Gk(α) = θ

(n)
k .

However, finding the appropriateGk(α) involves the irregular wave functions [LMK+96]

and proving them to be appropriate is as hard as estimating the error. The use of

maximum likelihood has also been explored and particularly for detector tomography

[DMP04, Fcv01]. However, the speed of the convergence is not generally guaranteed

to be high, becoming exponential for certain problems. Our approach, following the

spirit of maximum-likelihood, translates the problem into a quadratic optimisation one

allowing for efficient semi-definite programming (SDP) (cf. Eq. 4.10). We discuss here

the details, approximations and filters that lead to our solution of the problem.

4.4.1 Truncation

The data was measured up to |α|2 = 150 but was truncated at lower values to avoid noisy

behaviour and the emergence of new regimes requiring a larger POVM space. This was

hinted at (but not specifically proven) by the detector’s lack of saturation. That is, The

probability of having 8 clicks (the maximum) for |α|2 = 150 was not close enough to

1. And the probability of having 7 clicks was still about 0.2 away from zero for such

high average photon number. We found |α|2 < 60 to be a fair truncation since it is

sufficient to characterise a 9 outcome detector up to reasonably high Fock layers and we

wanted to avoid the possibility of the loopy detector + electronics entering a different

regime. Among the plausible explanations for non saturation we count the possibility of

the FPGA (field-programmable gate array) failing to count all 8 present pulses when 8

or more occur. This could be due to incorrect time-gating but was not yet been clarified.
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Figure 4.11: POVM reconstruction, using only minimisation from eq. 4.16. Dark blue:
π0 clicks =

∑15
i=0 θ

(0)
i |i〉〈i|, lighter blue, π1 click =

∑15
i=0 θ

(1)
i |i〉〈i|, etc..

4.4.2 Pure vs. Mixed

The Q-function of our detector (directly measured) is proportional to,

pn,α = tr[|α〉〈α| π(n)]. (4.14)

Since we have no phase reference, the POVM elements will be diagonal π(n) =
∑

k θ
(n)
k |k〉〈k|.

Measuring the statistics for D different values of α, α1 . . . αD, and truncating the num-

ber states at a sufficiently large M , we can rewrite Eq. 4.14 as

P̃ = F Π. (4.15)

In particular, for an N outcome detector, the matrices will have dimensions PD×N ,

FD×M and ΠM×N . We tried to invert Eq. 4.15 using a semi-definite solver such as

Yalmip (therefore making a simple minimisation of a quadratic problem). We imposed

πn ≥ 0 and
∑

n πn = 1I and optimised:

118



4.4 Ill Conditioning and Regularisation

1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reconstructed POVM pure 

Figure 4.12: POVM reconstruction, using only minimisation from eq. 4.16. Dark blue:
π0 clicks =

∑15
i=0 θ

(0)
i |i〉〈i|, lighter blue, π1 click =

∑15
i=0 θ

(1)
i |i〉〈i|, etc... displayed up to

Fock layer 30.

min ‖ P̃ − F Π ‖2. (4.16)

The obtained POVMs {πn} showed irregular dips and a structure very dissimilar

from what a TMD was expected to do.

The Fig. 4.11 shows a typical result data, and Fig. 4.12 shows it for higher photon

numbers revealing an even more irregular structure. A first approach was to consider

that a certain uncertainty in the intensity of the coherent states x = |α|2 existed. If D

values of x were measured then the real x̄ = (x1, x2, ..., xD) might have actually been,

x̄δ̄ = (x1(1 + δ1), x2(1 + δ2), ..., xD(1 + δD)). To address the effect of this uncertainty

on our minimisation we can artificially introduce noise and then average over many runs

of the optimisation. That is: Since F in Eq. 4.16 depends on x, for a family of {δ̄j}

randomly distributed we run the optimisation and obtain a family of {π(δ̄j)
n }. To choose

the random {δ̄j} we take a Gaussian distribution with σ = 2%|α|2 since that was the
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Figure 4.13: POVM reconstruction, using direct averaging (150 runs with 1% Gaussian
noise).

magnitude of the measured jitter. Subsequently we average over the POVMs obtained

with different “jitters” δ̄j in x̄, obtaining:

π(n)
average =

∑
j

π(δ̄j)
n /N.

Making 200 runs of this averaging corrected some irregularities in the POVMs but

barely solved the “dips” observed. Fig. 4.13 and Fig. 4.14 are an example of this

lack of success.

A key objection is that this was not the proper quantum mechanical treatment of

uncertainty in x. Each probe state would be best described by a mixture of coherent

states,

ρx =
∫
d2β|β〉〈β|fx(β) (4.17)

=
∑∞

n,m=0Rn,m,x|n〉〈m|, (4.18)

where fx(β) is some distribution centered around x in phase space. We can integrate this
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Figure 4.14: POVM reconstruction, using direct averaging (300 runs with 2% Gaussian
noise).

state ρx over the complex phase since we have no phase reference and focus solely on

the amplitude of the coherent states or mixtures thereof. Measurements reveal that the

intensity of the laser varies from pulse to pulse following a distribution that looks like

a Lorentzian with a tail. A good approximation can however be made using a Gaussian

distribution with standard deviation σ = 0.02|α|2 implying

Rn,m,α =
1

σ
√

2π
√
n!m!

∫
βn+me−β

2

fx(β) dβ.

with fx(β) = e−(β2−x)2/(2σ2). The detection probability for outcome n is then

p(α, n) =
∞∑
k=0

Rk,k,αθ
(n)
k . (4.19)

To simplify these calculations we can write a distribution in
√
x = |α|,

ρ|α| =

∫
d2β|β〉〈β| g|α|(β) (4.20)

with gα(β) = e−(β−α)2/(2Γ2). In this case Γ is chosen such that the approximation

fx(β) ' gα(β) holds. These subtleties however do barely alter our results and POVMs
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4.4 Ill Conditioning and Regularisation

are as irregular as previously.

To evaluate the difference introduced by the pure ( |α〉〈α| ) or mixed state ( ρ〈α〉 )

approach we studied their influence on the reconstructed POVMs. In the regularised

optimisation (i.e. for our final results), we compared the POVMs obtained with each

description finding that:
||Πpure − Πmixed||2
||Πmixed||2

≤ 0.7% (4.21)

and the largest relative difference between any two θ(n)
k coming from a mixed state or a

pure state derivation was 1.3%. Furthermore the reconstructed probability distributions

are so close that they are indistinguishable on the scale of Fig. 4.6. This reinforces our

earlier expectation that technical noise in the laser will be negligible when using single-

photon-level coherent states. This differs from homodyne tomography where technical

noise can shift a strong local oscillator to a nearly orthogonal state.

However, since the problem of the irregular POVMs is not solved by the mixed state

description we need to look further into the origin of our strange results. One first re-

markable (but expected) property is that large variations in the photon number degree of

freedom of the POVMs result in minuscule differences in the probability distributions

(see Fig. 4.7). Since one convolutes the photon number distribution with a Gaussian

in α to obtain the Q-function this behaviour was expected. Conversely this means that

small errors or statistical fluctuations in the Q-function can result in large errors in the

POVM elements. Consider for example that if instead of

min ‖ P̃ − F Π ‖2

we try to minimise

min ‖ F−1P̃ − Π ‖2

the SDP solver finds no sensible solution. This is because using the Moore-Penrose

pseudo-inverse we find F−1F 6= 1I due to its inherent ill conditioning.
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4.4 Ill Conditioning and Regularisation

Various methods exist to try and regularise these problems. Whatever the chosen method

it should assume as little knowledge as possible about the specific form of the sought

POVM. For example since F has very small values for high photon numbers one could

enhance those values while preserving the minimisation target. For example we could

run the optimisation

min ‖ P̃D − F ΠD ‖2

where D is a diagonal matrix aimed at regularising the problem. This can be shown to

introduce some improvement. It is however hard to find the exact form ofDi,j = f(i, j)

that yields ‘good’ results without any prior knowledge about the expected POVMs. In

addition (roughly speaking) it is hard to find a balance between having good results for

low photon numbers and high photon numbers.

Another approach is to introduce a sort of damping or specific penalisation. For
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Figure 4.15: Minimisation using damping method on Eq. 4.22. Note that the point of
view is opposite that of the previous plots. We see some dips around the 5th and 7th
Fock layer.

123



4.4 Ill Conditioning and Regularisation

example one could define a diagonal matrix M such that M(i, j) = δi,j
1
i
, and use it

to redistribute the weight of each POVM element, avoiding unreasonably large POVM

element amplitudes (that compensate for low values in F). The optimisation could be

recast as,

min {‖ P̃ − F Π ‖2 +0.03 ‖MΠ ‖2} (4.22)

A result of this can be seen on Fig. 4.15. This method has the same shortcomings as the

previous one: it is sensitive to the choice of parameters and the exact form of M(i, j) is

hard to determine without detailed prior assumptions.

A more reasonable method is to capture the relative smoothness of the POVM from

a lossy detector. This method is also called smoothing regularisation [BV04]. In this

case one single assumption needs to be made. The POVMs should exhibit a certain

degree of “smoothness”.

4.4.3 Smooth or Not?

Let us first define what we mean by smooth. Smooth will mean in this context that the

difference θ(n)
k − θ

(n)
k+1 is small. And in the optimisation context we will mean that our

minimisation is defined as follows:

min {‖ P̃ − F Π ‖2 +yS}. (4.23)

with

S =
∑
k,n

[θ
(n)
k − θ

(n)
k+1]2.

Should the POVMs of our detector be smooth at all? Should the POVMs of an arbitrary

detector be smooth? One simple argument is that any lossy detector should have some

degree of smoothness. Indeed if an optical detector has a POVM element with non-zero

amplitude in |n〉〈n|, then if it is lossy, it will have a positive amplitude in |n+ 1〉〈n+ 1|,

|n+ 2〉〈n+ 2|, etc decreasing with n but different from zero. In fact, in general, if

the detector has a finite efficiency η which can be modelled with a BS, it will impose
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4.4 Ill Conditioning and Regularisation

some smoothness on the distribution θ(n)
k . That is because if G(r) is the probability

of registering r photons and H(q) is the probability that q were present then the loss

process will impose [Pre05]:

G(r) =
∑
q

(
q

r

)
ηr(1− η)q−rH(q).

Consequently, if θk 6= 0 then θk+1, θk+2 etc. cannot be zero, but will have some rela-

tively smooth distribution. This simple physical argument calls for smoothness (but still

should allow sharp transitions for m < n).

For this detector (and for any photodiode based detector) assuming loss is reasonable

and can make the ‘smoothness’ requirement plausible. Let us however see if without

looking at the specific shape of our POVM we can find an optimal smoothing coeffi-

cient y and justify further the use of the smoothing regularisation. One way to test

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
Sensitivity to noise of the Optimization

δ (Noise Percentage)

|π
δ=

0 −
 π
δ|

y = 0.01
y = 0.1

y = 0.5

y = 0

Figure 4.16: Illustration of the sensitivity to noise for two different minimisation meth-
ods (y = 0: No regularisation and y 6= 0: with smoothing regularisation). For each
value of y and δ we ran the optimisation 4 times and displayed the results here to illus-
trate this variation

this method is to quantify how resilient it is to noise in the data. To do so we intro-
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Figure 4.17: Illustration of how sensitive the optimisation is to the specific choice of
y. This plot shows the relative error with respect to the POVM elements obtained using
y = 0.1, as a function of y. In red, and only for reference (since it does not change
with y), the value of the relative error for y = 0 (no smoothing) is shown. We vary y in
the range [0.001-1]. It is remarkable that a 10000% variation in y results in only a 12%
variation. For y ∈ [0.05− 0.2] the relative error is less than 2%. in Π.

duce additional noise in x = |α|2 to the measured data. For example we can alter x

in P̃i,n = P (xi(1 + δi%), n) where δ is a random variable distributed around zero with

a Gaussian distribution. This simulates a statistical uncertainty in the measurement of

the coherent state. To see its effect on the reconstruction we use the figure of merit

||Πδ − Πδ=0||2. This quantity should evaluate how POVMs differ from the one without

noise. It is seen that the additional smoothing penalty makes the optimisation more ro-

bust, largely independent of the value of y (we can multiply y by a 100 and stay in the

same regime). Using this smoothing regularisation with noisy data seems therefore a

good choice.

Another question we might want to ask is how sensitive this optimisation is to the exact

choice of y. To do so we may use the following procedure: compare the POVM ob-

tained using y = 0.1 with that obtained varying y over 4 orders of magnitude. On Fig.

4.17 we plot the relative error 100 ∗ |Πy − Πy=0.1|/|Πy=0.1|. Remarkably doubling the

value of y results in an overall relative error in the POVM of less than 1%. Multiplying
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4.4 Ill Conditioning and Regularisation

Figure 4.18: Illustration of how too much smoothing can fail to capture the sharp vari-
ations of a POVM. (note that loopy stands for loopy detector. We define Πteo as the
matrix containing the POVM elements of the theoretical POVMs. From them we gen-
erate a probability distribution and reconstruct the POVMs Πoptim with the smoothing
regularised optimisation. The dotted lines represent ||Πoptim − Πteo||2 for different val-
ues of y and for a variety of POVMs (see following plots). The horizontal lines represent
that same difference for y = 0 and are plotted for reference.

(or dividing) y by 10 gives a variation below 5% and 100 fold variation results in a 12%

variation. If we compare how this differs from the y = 0 case which is 110 % different

then we can conclude that the optimisation is quite insensitive to the exact choice of the

smoothing parameter y. The following table provides some values for reference.

y y variation Π relative error

0.0001 x 1000 27.3%

0.001 x 100 12.2%

0.01 x 10 4%

0.05 x 2 1%

0.5 x 5 3%

1 x 10 5%
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4.4 Ill Conditioning and Regularisation

4.4.4 Sharp and Smooth

These findings however prompt the following question: Is it possible for the smoothing

regularisation to wash out all the sharp features of the POVM, thus smoothing in excess?

This of course is a legitimate question that further restricts the reasonable range for y.

To study that effect we analyse four cases:

1. A theoretical loss-less TMD, based on the model described in Eq. 4.6.

2. a lossy TMD, based on the above with added loss from an R = 52% BS.

3. a perfect photon number detector, therefore with πn = |n〉〈n|.

4. an artificial POVM with sharp variations. (having terms such as π0 = |0〉〈0| +

|2〉〈2| while keeping
∑

i πi = 1I).

To study the smoothing we generate the POVM elements {πn} numerically, build a

probability distribution Tr {ραπn} and retrieve the πn using the optimisation from Eq.

4.23 for an increasing range of y-s. then compare this results with the theoretical

POVMs we defined in order to generate the PD. All optimisations are done using

the mixed-state approach from Eq. 4.20. Broadly speaking we find two behaviours:

POVMs with terms that decay slowly in photon number need regularisation and are quite

insensitive to the precise y. For sharp POVMs (without loss) the range 0 < y < 0.01

preserves their shape quite well, but further smoothing hides their true shape. These

properties are further illustrated in the figures that follow.

Lossy TMD:

Fig. 4.19 presents the evolution of the ‘4 click ’ POVM element as we add more smooth-

ing (or increase y in Eq. 4.23). This element is chosen as an illustrative example but

the full details can be seen in appendix A.0.1. The figure shows in blue the coefficients

θ
(4)
i in πrec

4 =
∑60

i=0 θ
(4)
i |i〉〈i|, where rec means reconstructed. In yellow, stacked on top
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Figure 4.19: Smoothing Evolution for a lossy TMD detector (loss=52%). We show
as an example the evolution of the POVM element π4 clicks =

∑60
i=0 θ

(4,rec)
i |i〉〈i| as we

increase the amount of smoothing (in y). The yellow bars display |θ(4,teo)
i − θ

(4,rec)
i |

stacked on top of θ(4,rec)
i .

of θ(4)
i we display |θ(4,rec)

i − θ
(4,teo)
i |, where teo refers to the original POVM we used

to generate the probability distribution. Clearly the smoothing improves the result and

the exact value of y is rather unimportant. A sharp feature that is preserved however is

θ
(4)
i = 0 for i < 4 proving a good agreement with the model.

Loss-Less TMD: Fig 4.20 shows also the ‘4 click ’ event and the error associated with

the reconstruction (yellow). This TMD shows in its distribution the finite number of

bins as we described earlier. The distribution is not as broad as that of the lossy-loopy-

detector and the smoothing is therefore not so effective. The raw SDP (with y = 0)

performs quite well, and the POVM is quite insensitive to the smoothing, although,

when given 1/2 of the weight in the optimisation (y = .5) the smoothing starts to be-

come too important.

Perfect Number Detector: Fig 4.21 shows also the ‘4 click ’ event which in this case

is simply π4 = |4〉〈4|. A very interesting feature is that the simple SDP with y = 0

achieves a perfect result. This happens in spite of using a mixed state as a probe state

(mixture of amplitudes |α| around |α〉〈α|). The reconstruction is then robust for very
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Figure 4.20: Smoothing Evolution for a perfect TMD detector (no loss). We show as an
example the evolution of the POVM element π4 clicks =

∑60
i=0 θ

(4,rec)
i |i〉〈i| as we increase

the amount of smoothing (in y). The yellow bars display |θ(4,teo)
i − θ(4,rec)

i | stacked on
top of θ(4,rec)

i .

well defined and sharp features, where the higher decaying coefficients don’t introduce

instabilities.

Sharp POVM: This element has no claim of realism but was artificially generated

to push the limit of the smoothing regularisation. The element displayed in Fig. 4.22

is π4 = |7〉〈7| + |9〉〈9| and we can see that y = 0.1 is already too much smoothing.

Certainly to reconstruct a completely loss-less detector with such a structure smoothing

is not an appropriate strategy. We must remember however that all current photon-

number detectors that count particles do exhibit loss, and have therefore some degree of

smoothness in them.

4.5 Detailed Assumptions

The strategy adopted here to characterize states raises fundamental questions about the

kind of information we can extract from Nature. We have highlighted how state to-

mography performed without an accurate characterization of the detectors can lead to
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Figure 4.21: Smoothing Evolution for a perfect photon number detector, that is one with
π(n) = |n〉〈n|. We show as an example the evolution of the POVM element π4 clicks =∑60

i=0 θ
(4,rec)
i |i〉〈i| as we increase the amount of smoothing (in y). The yellow bars

display |θ(4,teo)
i − θ(4,rec)

i | stacked on top of θ(4,rec)
i .

unwanted errors but the converse is obviously true. Either our state is well known or

our detector well characterized. In our case a few implicit assumptions are made. Some

relate to the standard quantum mechanics formalism and others to the specifics of the

experiments in question. In our case we assume that the states produced by the laser

are mixed single mode coherent states. The pulses produced have a varying amplitude

from one pulse to the next one but are assumed to be spectrally identical (although it’s

not clear that minor spectral differences would affect their detection probabilities).

Additionally it is assumed that the calibrated power meter can measure to within 5%

error the intensity of the pulses produced. If it indeed measures the intensity of coherent

states we can build the mixed state distribution mentioned above. Following standard

quantum optics formalism we also assume that coherent states keep their photon num-

ber distribution and coherence under neutral density filter and beam splitter attenuation.

The next assumptions have to do with the detector. That it can be described with a

nine element POVM (corresponding to nine outcomes) seems a reasonable assumption.
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Figure 4.22: Smoothing Evolution for an invented POVM with sharp variations. Dis-
played is π4 = |7〉〈7| + |9〉〈9|. We show as an example the evolution of the POVM
element π4 =

∑60
i=0 θ

(4,rec)
i |i〉〈i| as we increase the amount of smoothing (in y). The

yellow bars display |θ(4,teo)
i − θ(4,rec)

i | stacked on top of θ(4,rec)
i .

Underlying this hypothesis lies the memory-less detector. In other words, the assump-

tion that previous measurements don’t modify the result of future measurements. Some

of these hypothesis could be further explored if we knew well some detectors or some

states. For example the response of BS and neutral density filters to single photons

could be explored (granted good single photons and reliable single photon detectors).

The time independence of the POVMs could also be studied with well known states.

The excellent fit of the data to the Q-function suggests however that a complex conspir-

acy should occur to modify the quantum states sent to the detector at each shot while

varying the POVMs accordingly.

In an attempt to generalize the concept of tomography we could simply take a black

box approach: prepare a collection of unknown states, measure them and try to draw

conclusions about both the detector and the states.
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4.5.1 Without assumptions, can we have the pie and eat it too?

In the the most general tomographic setting presented above, we could have some classi-

cal controls to prepare quantum states characterized by the index {λ} and some classical

pointer to indicate the possible outcomes {n}. Minimizing the set of assumptions would

constrain us to draw our conclusions exclusively from the probability distribution pλ,n.

Of course many assumptions need to be made to take us beyond this stage. As an ex-

ample consider the setup where {λ} = {1} and {n} = {1, 0} with {p1,0, p1,1} = {a, b}.

This black box would make a random variable describing a biased coin indistinguish-

able from, say the quantum states
√
a|2011〉+

√
b|0438〉 or a|0〉〈0|+ b|1〉〈1| measured

with the appropriate detector. In a more extreme case, we could prepare a million differ-

ent states with different λ’s and obtain always the same result n1 gaining no information

at all.

To further constrain the problem we can add the standard assumptions: Known dimen-

sionality of the state space,Hd, a family of states
{
ρλ/Tr {ρλ} = 1, ρ†λ = ρλ, ρλ ≥ 0

}
and for anN outcome detector

∑
n πn = 1I in addition to πn ≥ 0. These assumptions to-

gether with their relationship pρ,n = Tr {ρπn} leave the pair detector/state still far from

determined. Staying within the finite dimensional setup each ρλ has d2 − 1 parameters

and the POVM elements have (N − 1)d2. More problematic is however the relation of

the parameters in λ to the d2 − 1 parameters which is in principle unknown. The values

λi of all our d2 − 1 knobs in our preparation machine could simply be preparing a state

with ρ0,0 =
∑

i λi and a random (or conspiratory) distribution of all other parameters.

This discussion simply highlights the inherent difficulties that a fully general inference

(or tomographic) scheme entails. Reasonable assumptions are thus needed but the ques-

tion of general tomography remains an interesting one to be explored. In this direction,

some progress has been made in self-testing maps. In this context states are prepared

with classical recipes and families of unitary gates are revealed with few assumptions

about the quantum states (however known measurements in the computational basis are
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allowed) [DMMS99].

4.5.2 Model of the detector

Coming back to the case where all our reasonable assumptions are granted, we could

wonder how accurate our model of the detector might be. One could even wonder

if any information can be obtained from the discrepancy between our model and the

reconstructed POVMs. For instance one could think that if a model assuming linear

optics and linear loss cannot match the reconstruction this could reveal new forms of

loss in the detector. However the current fit is so precise that any discrepancy is well

beyond the error bars. The error in this kind of tomographic reconstruction has been

studied only in very recent developments [AS08] and is well beyond the 98% fidelity

we achieved.

4.6 Conclusion

As quantum information and computation implementations evolve, detectors are be-

coming more complex. This, as we have seen, calls for a black-box characterisation

of the operators they implement. We have seen the first implementation of this type of

tomography. The reconstruction methods are simple and efficient. However one has

to pay close attention to the subtleties behind the ill conditioning of such reconstruc-

tions whether it’s state or detector tomography. Fully characterising a detector with this

method can help get rid of complex or erroneous assumptions in the modelling. Fur-

thermore, once they are fully characterised, one can re-design or alter the detectors with

a direct feedback on their performance.

Detector tomography of course benefits state tomography or metrology. For instance it

enables the use of detectors that are noisy, non-linear or that operate in different ranges.

As long as we know the exact POVMs, we can describe the rest of our experiment ac-

cordingly. More specifically, our well characterized TMD provides a unique tool for
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performing the non-Gaussian operations described in previous chapters. This method

will also allow the benchmarking of similar detectors making performance comparisons

possible.

Knowledge of the POVMs allows one to ask precise quantitative questions about the

power of preparing non-classical states. This opens a path for the experimental study

of yet unexplored concepts such as the non-classicality of detectors. A promising av-

enue for future research will be to transfer well-established techniques from homodyne

tomography to optical detector tomography (e.g. balanced noise-reduction, direct mea-

surement of the Wigner function or pattern functions). Naturally an immediate next step

would involve characterizing detectors with off diagonal terms and phase sensitivity.
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5

Conclusion

5.1 Summary of Thesis Achievements

In this thesis we have presented three main lines of investigation. The first one concerns

both the optimization and implementation of entanglement distillation in continuous

variables with linear optics. The second one concerns the experimental challenges in-

volved in proof-of-principle distillation and the third one the full characterization of

detectors operating in the single photon regime.

As presented in chapter 2, small modifications to current distillation protocols can re-

duce resource consumption and increase probabilities by many orders of magnitude.

Even so, technological breakthroughs in optical storage and switching could increase

the performance of this family of protocols many fold.

Chapter 3 has shown the feasibility of increasing entanglement in continuous variables

experiments by means of LOCC. Simulations using reasonable experimental parame-

ters suggest that photon subtraction in this context can achieve entanglement increases.

Furthermore, tools such as entanglement witnesses make it easy to perform rigorous
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demonstrations of entanglement increases. Carrying out such first steps should pave the

way towards more involved CV entanglement distillation.

Finally, in chapter 4, we have shown how to go beyond the partial calibration of com-

plex photon-number resolving detectors. The technique of detector tomography has

been shown to be a reliable way to reconstruct the operators that describe quantum de-

tectors. To do so the thesis details the assumptions and methods used. Among the tools

used we find mixed probe states, regularized quadratic optimization and various ways

to test the regularization without explicitly looking at the resulting POVMs.

5.2 Future Work

Many of the results in this thesis have either prompted new questions or opened the door

for new research areas. The distillation protocols studied have lead to new variants I was

unable to explore due to time constraints. It would however be very interesting to follow

the evolution of unsuccessful distillation results described in Ch. 2 when more iterations

are applied. More details concerning the possibilities optical storage and switching of-

fer should also be explored.

Concerning photon subtraction and practical distillation the collaboration with Oxford

University should bear new results soon which will need careful analysis and interpreta-

tion. In the future a more accurate multimode description could also bring more insight

into these experiments and the kind of sources and losses involved.

Finally, since the tomography experiments presented are the first ones of their kind

there is a lot of room for investigation. Detector tomography with phase sensitive ap-

paratuses presents an immediate challenge. To strengthen the motivation behind this

method it is worthwhile researching what kind of errors a mis-characterization of detec-

tors might lead to. What kind of errors one might incur in when doing tomography or

using entanglement witnesses is a great area for exploration. From a more fundamental

137



5.2 Future Work

perspective exploring the restrictions tomography imposes on states and POVMs is a

yet unexplored and promising territory.
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A.0.1 Smoothing Regularization for Detector Tomography

The following plots illustrate in more detail the discussion from subsection 4.4.3.
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Figure A.1: Reconstruction of a theoretical lossy loopy detector with the ||P̃ − FΠ||2
optimization, where F uses the pure state description. We clearly observe that the op-
timization is ill conditioned for high photon numbers. In blue are the POVM element
amplitudes (θ(n)

i ) and in yellow we present the absolute value of the difference between
the theoretical θ(n)

i and the reconstructed ones.
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Figure A.2: Reconstruction of a theoretical 9-bin loopy detector with the ||P̃ − FΠ||2
optimization, where F uses the pure state description. We clearly observe that the op-
timization is ill conditioned for high photon numbers. In blue are the POVM element
amplitudes (θ(n)

i ) and in yellow we present the absolute value of the difference between
the theoretical θ(n)

i and the reconstructed ones.
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Figure A.3: Reconstruction of a theoretical detector with POVMs θ(n)
i = |n〉〈n| by

means of the ||P̃ −FΠ||2 optimization, where F uses the pure state description. In blue
are the POVM element amplitudes (θ(n)

i ) and in yellow we present the absolute value of
the difference between the theoretical θ(n)

i and the reconstructed ones. In this case the
error is so small that the yellow bars are imperceptible.
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Figure A.4: Reconstruction of a theoretical detector with POVM elements specifically
designed to test the smoothing regularization. We have for instance, π0 = |0〉〈0|+|2〉〈2|,
π1 = |1〉〈1|+ 1

2
|3〉〈3|, etc which have sharp variations. In this case the reconstruction is

done by means of the ||P̃−FΠ||2 optimization, where F uses the pure state description.
In blue are the POVM element amplitudes (θ(n)

i ) and in yellow we present the absolute
value of the difference between the theoretical θ(n)

i and the reconstructed ones. In this
case the error is so small that the yellow bars are imperceptible.

143



0 10 20 30
0

0.2

0.4

0.6

0.8

1
0!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
1!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
2!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
3!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
4!click

Reconstruction of
Lossy Loopy

(T=0.48, 9 bins)
 

y=0.001 
(slight smoothing)

0 10 20 30
0

0.2

0.4

0.6

0.8

1
5!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
6!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
7!click

0 10 20 30
0

0.2

0.4

0.6

0.8

1
8!click

Figure A.5: Reconstruction of a theoretical lossy loopy detector with the ||P̃ − FΠ||2
optimization, where F uses the pure state description. We see that giving a small weight
to the smoothing condition already improves the reconstruction greatly. In blue are the
POVM element amplitudes (θ(n)

i ) and in yellow we present the absolute value of the
difference between the theoretical θ(n)

i and the reconstructed ones.
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Figure A.6: Reconstruction of a theoretical 9-bin loopy detector with the ||P̃ − FΠ||2
optimization, where F uses the pure state description. Smoothing has little effect on
the sharpness arising from the ‘no dark counts’. In blue are the POVM element ampli-
tudes (θ(n)

i ) and in yellow we present the absolute value of the difference between the
theoretical θ(n)

i and the reconstructed ones.
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Figure A.7: Reconstruction of a theoretical detector with POVMs θ(n)
i = |n〉〈n| by

means of the ||P̃ − FΠ||2 optimization, where F uses the pure state description. For
this perfect photon number resolving detector the POVM elements are slightly altered
by the y = 0.001 smoothing but not in any significant manner. In blue are the POVM
element amplitudes (θ(n)

i ) and in yellow we present the absolute value of the difference
between the theoretical θ(n)

i and the reconstructed ones.
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Figure A.8: Reconstruction of a theoretical detector with POVM elements specifically
designed to test the smoothing regularization. We have for instance, π0 = |0〉〈0|+|2〉〈2|,
π1 = |1〉〈1|+ 1

2
|3〉〈3|, etc which have sharp variations. In this case the reconstruction is

done by means of the ||P̃−FΠ||2 optimization, where F uses the pure state description.
In blue are the POVM element amplitudes (θ(n)

i ) and in yellow we present the absolute
value of the difference between the theoretical θ(n)

i and the reconstructed ones. In this
case the error arising from the smoothing begins to appear.
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Figure A.9: Reconstruction of a theoretical lossy loopy detector with the ||P̃ − FΠ||2
optimization, where F uses the pure state description. We clearly observe that the op-
timization is ill conditioned for high photon numbers. In blue are the POVM element
amplitudes (θ(n)

i ) and in yellow we present the absolute value of the difference between
the theoretical θ(n)

i and the reconstructed ones. The agreement in this case is excellent.
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Figure A.10: Reconstruction of a theoretical 9-bin loopy detector with the ||P̃ −FΠ||2
optimization, where F uses the pure state description. We clearly observe that the op-
timization is ill conditioned for high photon numbers. In blue are the POVM element
amplitudes (θ(n)

i ) and in yellow we present the absolute value of the difference between
the theoretical θ(n)

i and the reconstructed ones. The agreement is still good especially
for high photon numbers.
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Figure A.11: Reconstruction of a theoretical detector with POVMs θ(n)
i = |n〉〈n| by

means of the ||P̃ −FΠ||2 optimization, where F uses the pure state description. In blue
are the POVM element amplitudes (θ(n)

i ) and in yellow we present the absolute value of
the difference between the theoretical θ(n)

i and the reconstructed ones. In this case the
error arising from the smoothing is significant.
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Figure A.12: Reconstruction of a theoretical detector with POVM elements specifically
designed to test the smoothing regularization. We have for instance, π0 = |0〉〈0|+|2〉〈2|,
π1 = |1〉〈1|+ 1

2
|3〉〈3|, etc which have sharp variations. In this case the reconstruction is

done by means of the ||P̃−FΠ||2 optimization, where F uses the pure state description.
In blue are the POVM element amplitudes (θ(n)

i ) and in yellow we present the absolute
value of the difference between the theoretical θ(n)

i and the reconstructed ones. In this
case (y = 0.1) the error for the reconstruction of a sharp POVM (with non exponentially
decaying elements) is significant.
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B.1 Explicit Calculation for the Gaussian Projective Measurement of a Gaussian State

B.1 Explicit Calculation for the Gaussian Projective Mea-

surement of a Gaussian State

We will explicitly calculate the result of performing a Gaussian destructive measure-

ment on a Gaussian state in terms of its first and second moments. In particular we will

evaluate the probability for a homodyne projective measurement described by |α〉〈α|

performed on one of its modes.

B.1.1 Conventions and useful relations

• ρ will designate the density operator of an N mode Gaussian state of light.

• χρ(η) = Tr [Dηρ] : characteristic function.

• Dη = eiησR̂ : Displacement (or Weyl) operator.

• η or ξ : 2N real variables vectors.

• R̂i will be the canonical variables where R̂2i−1 = X̂i and R̂2i = P̂i satisfy the

canonical commutation relations.

• σN =
⊕N

j=0

 0 1

−1 0

 will be called symplectic matrix N (and will be of

order 2N × 2N ).

• |φ〉 will be a k mode Gaussian state of light.

• Wρ(ξ, s) =
1

(2π)2N

∫
eiξση χ(η) es/4||η||

2

d2Nη :

Wρ(ξ, 0) = Wigner Function,Wρ(ξ,−1) = Q function

• note that
∫
|α〉〈α|d2α = π
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B.1 Explicit Calculation for the Gaussian Projective Measurement of a Gaussian State

B.1.2 Calculation

Our state before the measurement is ρ and the projection operator describing the pro-

jection of k modes onto a k mode Gaussian state |φ〉 is:

Pφ
k = |φ1〉〈φ1| ⊗ |φ2〉〈φ2| ⊗ ...⊗ |φk〉〈φk| ⊗ 1I⊗N−k.

After the measurement and since it is a destructive measurement leaving k modes inac-

cessible the state will be:

Trk[ρ
′] = Trk

 Pφ
kρPφ

k

†

Tr
[
Pφ
kρPφ

k

†]
 =

Trk

[
Pφ
kρPφ

k

†]
Tr
[
Pφ
kρ
] =

〈φ| ρ |φ〉

Tr
[
P φ
k ρ
]

where Trk stands for tracing over modes from 1 to k and Tr stands for tracing over all

modes (from 1 to N ).

State after measurement

Let us then recall the relation between ρ and the characteristic function:

ρ =
1

(2π)N

∫
d2Nη χρ(η) D†η in order to evaluate the operator:

〈φ| ρ |φ〉 =
1

(2π)N

∫
d2Nη χρ(η) 〈φ|D†η|φ〉

=
1

(2π)N

∫
d2Nη χρ(η) 〈φ|D†η̃1|φ〉 e−iη̃

>
2 σN−k

˜̂
R2

Where we have introduced the notation:

η> = (η1, η2, ..., η2N) = (η̃1
>, η̃>2 )

with

η̃1
> = (η1, η2, ..., η2k), η̃>2 = (η2k+1, ..., η2N)

and

R̂> = (R̂1, R̂2, ..., R̂2N) = (
˜̂
R>1 ,

˜̂
R>2 )
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B.1 Explicit Calculation for the Gaussian Projective Measurement of a Gaussian State

with
˜̂
R>1 = (R̂1, R̂2, ...R̂2k), and ˜̂

R>2 = (R̂2k+1, ..., R̂2N)

which allows us to write

〈φ| ρ |φ〉 =
1

(2π)N

∫
d2Nη χρ(η) Tr

[
|φ〉〈φ|D†η̃1

]
e−iη̃

>
2 σN−k

˜̂
R2

=
1

(2π)N

∫
d2Nη χρ(η) χ|φ〉〈φ|(−η̃1) e−iη̃

>
2 σN−k

˜̂
R2 .

=
1

(2π)N

∫
dη̃2 e−iη̃

>
2 σN−k

˜̂
R2

∫
dη̃1 χρ(η) χ|φ〉〈φ|(−η̃1)︸ ︷︷ ︸

=
1

(2π)N

∫
dη̃2 e−iη̃

>
2 σN−k

˜̂
R2 Ξ(η̃2).

We will now focus on Ξ, the scalar part of the integral. Recalling the form of the

characteristic function of any k mode Gaussian function:

χ|φ〉〈φ|(−η̃1) = e−i η̃
>
1 σk d −

1
4
η̃>1 σ

>
k γ σkη̃1

Where d = (d1, d2, ..., dk) = (q1, p1, q2, p2, ..., q2k, p2k) is the displacement and γ is the

covariance matrix (an arbitrary symmetric k × k matrix satisfying γ − iσ ≥ 0 that con-

tains the second moments. This describes both the projection onto a mixed state and the

projection onto a pure one whose covariance matrix satisfies (γσ)2 = −1I ). Note that in

case of homodyning one mode and therefore of a projection onto a coherent state |α〉,

then γ = 1I2×2 and α = q0+ip0√
2

.

Coming back to the general case and since ρ is a Gaussian function too we can rewrite:

Ξ =

∫
dη̃1 ei η

>σg− 1
4
η>σ> G σ η e−i η̃

>
1 σkd−

1
4
η̃>1 σ

>
k γ σkη̃1 (B.1)
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B.1 Explicit Calculation for the Gaussian Projective Measurement of a Gaussian State

Where g and G =

 A C

C> B

 are respectively the first moments and the covariance

matrix whose terms have the following dimensions:

A2k×2k, B(2N−2k)×(2N−2k), C2k×(2N−2k). We introduce additionally the notation:

g = (g̃>1 ; g̃>2 ) = (g1, g2, ..., g2k; g2k+1..., g2N), and reorder the terms in the exponential:

Ξ =

∫
dη̃1 exp

i
 η̃1

η̃2

> σN
 g̃1 − d

g̃2

− 1

4

 η̃1

η̃2

> σ>N
 A+ γ C

C> B

σN

 η̃1

η̃2




=

∫
dη̃1 exp

(
iη̃>2 σN−kg̃2 + iη̃>1 σk(g̃1 − d) −

(
η̃>1 A

′η̃1 + η̃>1 C
′η̃2 + η̃>2 C

>′ η̃1 + η̃>2 B
′η̃2

))
= exp

(
i η̃>2 σN−k g̃2 − η̃>2 B

′η̃2

) ∫
dη̃1 exp

(
−η̃>1 A′ η̃1 + η̃>1 p

)
︸ ︷︷ ︸

= exp
(
i η̃>2 σN−k g̃2 − η̃>2 B

′η̃2

)
Θ(G, g, γ, d)

Where we have successively defined:

A′ = 1
4
σ>k (A+ γ) σk

C ′ = 1
4
σ>k C σ

N−k = 1
4
σk C σ>

N−k

B′ = 1
4
σ>
N−k

B σ
N−k

p = [i σk(g̃1 − d)− C ′η̃2] + C ′η̃2 = i σk(g̃1 − d)− 2C ′η̃2.

Let us then focus on the calculation of Θ for which we will use Appendix A.
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B.1 Explicit Calculation for the Gaussian Projective Measurement of a Gaussian State

Θ =

∫ +∞

−∞
dη1...dη2k exp

(
−η̃>1 A′ η̃1 + η̃>1 p

)
=

πk√
|A′|

exp

(
p> (A′)−1 p

4

)
=

πk√
|A′|

exp
(
p> σ>k (A+ γ)−1σk p

)
We can then come back to Ξ which turns out to be proportional to χTrk(ρ′)(η̃2):

Ξ = exp
(
i η̃>2 σN−k g̃2 − η̃>2 B

′η̃2

) πk√
|A′|

exp
(
[i σk(g̃1 − d)− 2C ′η̃2]> σ>k (A+ γ)−1σk [i σk(g̃1 − d)− 2C ′η̃2]

)
=

πk√
|A′|

exp
(
i η̃>2 σN−k g̃2

)
exp

(
−1

4
η̃>2 σ>

N−k
B σ

N−k η̃2

)
exp

(
−(g̃1 − d)>σ>k σ

>
k (A+ γ)−1σkσk(g̃1 − d)

)
exp

(
−i(g̃1 − d)>σ>k

σ>k (A+ γ)−1σk
2

σkCσ
>
N−k

η̃2

)
exp

(
−iη̃>2 σN−kC>σ>k

σ>k (A+ γ)−1σk
2

σk(g̃1 − d)

)
exp

(
η̃>2 σ

>
N−k

C>σk
σ>k (A+ γ)−1σk

4
σ>k CσN−k η̃2

)
=

4kπk√
|A+ γ|

exp
(
i η̃2σN−k g̃2

)
exp

(
−1

4
η̃>2 σ>

N−k
B σ

N−k η̃2

)
exp

(
−(g̃1 − d)>(A+ γ)−1(g̃1 − d)

)
exp

(
−i η̃>2 σN−kC>(A+ γ)−1(g̃1 − d)

)
exp

(
η̃>2 σ

>
N−k

C>
(A+ γ)−1

4
Cσ

N−k η̃2

)
= ∆ exp

(
i η̃2σN−k g̃

out
2

)
exp

(
−1

4
η̃>2 σ>

N−k
Bout σ

N−k η̃2

)
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Where g̃out
2 and Bout are the new first and second moments defined as:

g̃out
2 = g̃2 − C> (A+ γ)−1 (g̃1 − d) (B.2)

Bout = B − C> (A+ γ)−1C (B.3)

And the ∆ factor is:

∆ =
(4π)k√
|A+ γ|

exp
(
−(g̃1 − d)> (A+ γ)−1 (g̃1 − d)

)
. (B.4)

Similarity transformation and the Schur Complement

An alternative and equivalent approach is to find a similarity transformation to solve the

integral Ξ presented above. Indeed eq. (B.1) may be rewritten:

Ξ =

∫
dη̃1 ei η

>σg′− 1
4
η>σ> G′ σ η

Were we have defined:

• g′> = (g
′>
1 , g

′>
2 ) = (g̃>1 , g̃

>
2 )− (d>,0)

• G′ =

 A C

C> B

+

 γ 0

0 0

 =

 A′ C

C> B



We note that w>G′w =

 A′ 0

0 B − C>A′−1C

 =

 A′ 0

0 B′

 where B′ is the

Schur complement if we define w =

 1I D

0 1I

 and D = −A′−1C . This similarity

transformation can be cast into the integral with the change of variables: y = w−1ση.

Since the Jacobian of the transformation

∣∣∣∣∣∣σ
 1I D

0 1I

∣∣∣∣∣∣ = 1 then dy2N = dη2N . As

before y1 will be the vector with the first 2k variables, and y2 will contain the remaining
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ones. We may then directly write:

Ξ =

∫
dy1 exp

−i y>w>g′ − 1

4
y>

 A′ 0

0 B′

 y


=

∫
dy1 exp

(
−i y>1 g′1 − iy>2 (Dg′1 + g′2)− 1

4
y>1 A

′y1 −
1

4
y>2 B

′y2

)
=

∫
dy1 exp

(
−i y>1 g′1 −

1

4
y>1 A

′y1

)
exp

(
iy>2 (C>A

′−1>g′1 − g′2)− 1

4
y>2 B

′y2

)
=

(4π)k√
|A+ γ|

e−(g̃1−d)>(A+γ)−1(g̃1−d) eiy
>
2 (C>(A+γ)−1g′1−g′2)− 1

4
y>2 B

′y2

if we recall ∆ from eq. (B.4), note that y2 = σN−kη̃2 and that σ = −σ> we may finally

rewrite:

Ξ = ∆ exp
(
iη̃>2 σN−k [g̃2 − C>(A+ γ)−1(g̃1 − d)]

)
exp

(
−1

4
η̃>2 σ

>
N−k

(B − C>(A+ γ)−1C)σ
N−k η̃2

)

recovering the result from eq. (B.2) and (B.3).

Moore-Penrose inverse

When (A+γ)−1 is not well defined we will use the pseudo-inverse (A+γ)+ to calculate

the corresponding matrix.

Probabilities

The state after the measurement is ρ′ = 〈φ| ρ |φ〉
Tr[Pφk ρP

φ†
k ]

. Also,

〈φ| ρ |φ〉 =
1

(2π)N

∫
dη̃2 e−iη̃

>
2 σN−k

˜̂
R2 Ξ(η̃2)

=
∆

(2π)k

[
1

(2π)N−k

∫
dη̃2 e−iη̃

>
2 σN−k

˜̂
R2 χρ′(η̃2)

]
=

∆

(2π)k
ρ′
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where we have required χρ′(0) = 1 In order for ρ′ to be normalized. It follows that

Tr
[
P φ
k ρP

φ†
k

]
= ∆

(2π)k
. The probability density for projecting k modes onto the Gaussian

state φ̂ characterized by (d, γ) will therefore be:

Tr
[
P φ
k ρP

φ†
k

]
=

2k√
|A+ γ|

exp
(
−(g̃1 − d)> (A+ γ)−1 (g̃1 − d)

)
. (B.5)

To check for consistency, this relation must obey the following particular statements:

• The probability of measuring the vacuum if our state is the vacuum is one:

Tr(|0〉〈0||0〉〈0|) =
2k√
|A+ γ|

=
2k√
|21I2k|

= 1

• The probability of measuring any coherent state is one:

1 =
1

πk

∫
Tr(|α1〉〈α1| ⊗ |α2〉〈α2| ⊗ ...⊗ |αk〉〈αk| ⊗ 1I⊗N−kρ)d2α1...d

2αk

=
1

πk

∫
2k√
|A+ γ|

exp
(
−(g̃1 − d)> (A+ γ)−1 (g̃1 − d)

) ∂d1∂d2

2
...
∂d2k−1∂d2k

2

=
1

(2π)k
2k√
|A+ γ|

√
π2k

|A+ γ|−1
= 1

• Probability ≤ 1⇐⇒ |A+ γ| ≥ 22k.

This property holds for covariance matrices [Bra07]. To prove that this is the case,

remember that A and γ are positive semidefinite matrices. and that− log [det (x)]

is a convex function of x. We can therefore write:

log

[
det

(
1

2
2A+

1

2
2γ

)]
≥ 1

2
log [det (2A)] +

1

2
log [det (2γ)] (B.6)

We Remind that symplectic transformations leave the determinant of covariance

matrices unchanged. Symplectic diagonalization will therefore give for |A| or |γ|

a determinant of the form
∏2k

i=1 λi where λi ≥ 1 are the symplectic eigenvalues.
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This allows us to write det (2A) ≥ 22k. This property and (B.6) prove the above

property.

Example

Another way to check the result is to evaluate the probability density for measuring
1
π
|α〉〈α| in the first mode:

P (α1) =
1

π
Tr
[
ρ |α〉〈α|1 ⊗ 1I⊗N−1

]
=

1

π
Tr
[

Tr/1(ρ) |α〉〈α|1
]

Where Tr/1(ρ) stands for tracing over all modes but the first one. Since ρ is a Gaussian

function, ρ1 = Tr/1(ρ) will have a covariance matrix which will be simply the sub-

matrix ofG corresponding to the first two canonical variables. Equally the first moments

will be the first two elements of the general g vector. This way we can express the

probability density for measuring α making use of the Q function. To this end note that

Q(α) is normalized to 1 as follows:
∫

Q(α)d2α =

∫
1

π
〈α|ρ|α〉d2α = 1. Therefore,

when integrating over position and momentum like variables,∫
2Q(ξ1, ξ2)

dξ1√
2

dξ2√
2

=

∫
1

π
〈α|ρ|α〉dξ1dξ2 = 1.

Therefore the probability density will be:

Tr

(
1

π
|α〉〈α|ρ

)
= 2Q(ξ1, ξ2)

=
2

(2π)2

∫
eiξ̃1ση̃1 χρ1(η̃1) e−

1
4
||η̃1||2 dη1dη2

=
2

(2π)2

∫ (
eiξ̃1ση̃1 ei η̃

>
1 σg̃1−

1
4
η̃>1 σ

> G̃1 σ η̃1 e−
1
4
η̃>1 1Iη̃1

)
dη1dη2

=
2

π
√
|G̃1 + 1I|

exp
(
−(ξ̃1 − g̃1)>(G̃1 + 1I)−1(ξ̃1 − g̃1)

)
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Which is indeed normalized so that
∫

Tr

(
1

π
|α〉〈α|ρ

)
d2α = 1. We have used the al-

ready introduced notation to distinguish the first two variables ξ̃1 = (ξ1, ξ2) from the

2N − 2 remaining ones. We have also identified the Wigner function as the Fourier

transform of our characteristic function with covariance matrix G̃1 + 1I. It is assumed

that α = ξ1+iξ2√
2

is the amplitude of the state we project onto, and (g1, g2) are the first

moments of ρ1.

For further applications of these calculations see [Krü01, WGK+04, CG69].

B.1.3 Useful Integral

For the Gaussian integral of a bilinear operator plus the linear term we find:

I =

∫ ∞
−∞

∫ ∞
−∞

e−η
>A η+η>p dηN

=

∫ ∞
−∞

∫ ∞
−∞

e−χ
>D χ + χ>U p

∣∣∣∣∂dη∂dχ

∣∣∣∣ dχN

Where we have made the change of variables: η> = χ>U>, η = Uχ,

and therefore χ>D χ = χ>U> A U χ = η>Aη , where D is the diagonal form of

matrix A. Since A is symmetric it is diagonalized by an orthogonal matrix U which

means that
∣∣∣ ∂dη∂dχ

∣∣∣ = |U>| = ±1. If we call p′ = Up We can rewrite:

I =

∫ ∞
−∞

∫ ∞
−∞

exp

(
N∑
i=1

−diχ2
i + χip

′
i

)
dχN

=

√
πN

Πidi
exp

(
N∑
i=1

p
′2
i

4di

)

=

√
πN

|A|
exp

(
1

4
p>U>

(
U>AU

)−1
Up

)

=

√
πN

|A|
exp

(
1

4
p>A−1 p

)
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C.1 The Quantavo Maple Toolbox

The toolbox is made to be used with the following approach:

Declare an initial state, let it evolve through a quantum optical circuit involving lin-

ear optics (LO) and measurements and finally ask various questions about the structure,

entanglement, and properties of the final state.

The toolbox intends to do so providing:

A) A framework in which to declare, manipulate and characterize quantum states of

light (finite number of modes, and finite dimensional).

B) Procedures that implement linear operations or whole linear optics circuits on our

states such as:

• Beam Splitters (BS)

• Phase Shifters (PS).

• arbitrary unitary transformations of the modes.

C) Procedures that implement arbitrary measurements (both projective or generalized

positive operator valued measures (POVM)).

D) Procedures to determine probabilities and expected values for projective measure-

ments and POVM measurements.

E) Procedures to trace out measured or inaccessible modes.

F) Procedures to calculate different entanglement measures such as:
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• Entropy of entanglement

• partial trace, norm→ Negativity, Logarithmic Negativity

G) Access to properties such as the mean Energy of given states.

H) Extract and display lists of coefficients along with their indexes like: RT
√

2 |001〉〈001|

H) Tools to easily plot states and density matrices.

C.2 Getting Started

Some previous knowledge about Maple from MaplesoftTM is required to use this tool.

However, the brief “Take a Tour of Maple” should suffice to get started. This toolbox

works with Maple 9.5, Maple 10 and Maple 11.

C.2.1 Definitions and Notation

Procedures: Formally, in Maple, a procedure definition is a valid expression that can

be assigned to a name. The procedures we will use can be thought of as a set of “rules”

that generally receive one or more inputs and return one or more outputs. We will write

them in typewriter face. For example the procedure IsHermitian(M) evaluates if a

Matrix M describing a density matrix is hermitian. A dictionary with all the procedures

involved in Quantavo can be found in the appendix.

Modules: Modules are repositories of procedures. By loading a module we can use

its procedures in the Maple worksheet. For example Quantavo is the module contain-

ing the procedures we will use.

objects: The objects in which we will encode our quantum states will be written in

bold face. These will include vec, mat, matcol and poly and will be introduced later.
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d and K: Throughout the manual, ‘K’ will stand for the number of modes and ‘d’ for

the dimension of each mode. If considering the photon number degree of freedom, then

‘d − 1’ will be the maximum number of photons in any mode. It is important to keep

track of the value of these two global variables throughout the worksheet as they play an

important role in the labelling of the optical modes and translation procedures. These

variables can always be updated and displayed with the procedure: findKnd(State).

C.2.2 Loading the Modules

All necessary files can be found at,

http://www.imperial.ac.uk/quantuminformation/research/downloads

1. uncompress the file Quantavo.zip.

2. Save the folder QUANTAVO to a given directory. It should contain the files

Quantavo.mpl and Quantavo Example Worksheet.mw.

3. One can start opening the worksheet Quantavo Example Worksheet.mw.

4. To use the module in a new worksheet execute the following commands 1:

> with(LinearAlgebra):

> read “Quantavo.mpl”;

> with(Quantavo);

It should return a list of all the procedures available 1:

1note that if the new file is in a different directory it should be,
>read “/path-to-folder/QUANTAVO/Quantavo.mpl”;
or under MS Windows,
>read “C:\path-to-folder\QUANTAVO\Quantavo.mpl”;
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[APD, BS, BuildUnitary, CoherentState, DP, Dbra, Dbraket,

DeltaK, Dket, Dstate, Energy, Entropy, EvalState, IdentityState,

IsHermitian, IsNormalized, LogNegativity, Negativity, POVMre-

sult, PS, PlotState, Probability, Project, SqueezedVac, StateApprox,

StateComplexConjugate, StateMultiply, StateNorm, StateNormal-

ize, StatePartialTranspose, StateSort, StateTrace, TensorProduct,

TensorVac, Traceout, Trim, UnitaryEvolution, Vac, findKnd,

indexstate, mat2matcol, mat2poly, matcol2mat, matcol2poly,

modesmatcol, myBS, poly2matcol, poly2vec, vec2mat, vec2matcol,

vec2poly]

5. You are ready to use Quantavo !

Note that You may also save the module to your Maple library. To do so, visit the

maple help on module, savelibname and savelib.
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C.3 Toolbox

To run Quantavo one has to load the following modules:

• LinearAlgebra (Linear Algebra package from MaplesoftTM built in Maple)

• Quantavo (General toolbox)

Additionally, if we want to plot our states we will also need the module

• geom3d (geometry package from MaplesoftTM built in Maple)

• plots (plotting package from MaplesoftTM built in Maple)

C.3.1 Objects and Operations

When quantum optical states have a few modes and live in high dimensions, the matrices

or vectors describing them very soon become intractable. To mitigate this difficulty, the

procedures from Quantavo store and manipulate only the non-zero elements in the

description of our states. Our main objects will be 2 column and 3 column matrices.

Pure States

Two column objects will describe vectors in Hilbert space of the form:

|φ〉 =
d−1∑

n1,n2,...,nK

f(n1, n2, ..., nK)|n1, n2, ..., nK〉

Where all indices “ni” range from 0 → (d − 1). Pure state vectors will be encoded in

2 column matrices that we will call trimmed vectors containing only non-zero entries.

They will only contain non-zero entries. These objects will be named as a short vector:

“vec” and will have the following appearance:
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ψ :=



1 [0, 0, 0]

λ [1, 1, 0]

λ2 [2, 2, 0]

λ3 [3, 3, 0]


For each row, the second column will be a list with the number of photons in each

mode, This way [0,1,2] stands for |012〉. the first column will contain the coefficient

associated with this ket. The whole will describe the linear superposition of all these

kets with their coefficients, therefore the above ψ describes the unnormalized quantum

state:

|ψ〉 =
3∑

n=0

λn|n, n〉.

Mixed States

Two objects will be used to display density matrices. The first one is a square matrix,

with as little zero entries as possible. This matrix will be called “mat” and will have for

the above state the following form:

ρ =



0 [0, 0, 0] [1, 1, 0] [2, 2, 0] [3, 3, 0]

[0, 0, 0] 1 λ̄ λ̄2 λ̄3

[1, 1, 0] λ λ λ̄ λ λ̄2 λ λ̄3

[2, 2, 0] λ2 λ2λ̄ λ2λ̄2 λ2λ̄3

[3, 3, 0] λ3 λ3λ̄ λ3λ̄2 λ3λ̄3


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Another object that can also describe a density matrix will be a 3 column matrix,

or trimmed density matrix. It will be named as a short column matrix: “matcol”. The

second column will be a list with the number of photons in each mode of the ket. This

way, [0,1] in the 2nd column describes |01〉. The third column will be a list with the

number of photons in each mode of the bra; therefore [2,1] in the 3rd column describes

〈21|. Finally The first column will have the coefficient associated with this |ket〉〈bra|

. The whole will describe the non zero elements of the density matrix. As an example

consider the above state which will be:
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ρmatcol =



1 [0, 0, 0] [0, 0, 0]

λ̄ [0, 0, 0] [1, 1, 0]

λ̄2 [0, 0, 0] [2, 2, 0]

λ̄3 [0, 0, 0] [3, 3, 0]

λ [1, 1, 0] [0, 0, 0]

λ λ̄ [1, 1, 0] [1, 1, 0]

λ λ̄2 [1, 1, 0] [2, 2, 0]

λ λ̄3 [1, 1, 0] [3, 3, 0]

λ2 [2, 2, 0] [0, 0, 0]

λ2λ̄ [2, 2, 0] [1, 1, 0]

λ2λ̄2 [2, 2, 0] [2, 2, 0]

λ2λ̄3 [2, 2, 0] [3, 3, 0]

λ3 [3, 3, 0] [0, 0, 0]

λ3λ̄ [3, 3, 0] [1, 1, 0]

λ3λ̄2 [3, 3, 0] [2, 2, 0]

λ3λ̄3 [3, 3, 0] [3, 3, 0]


Summarising, we will use mainly 3 objects: vec, mat and matcol.

A fourth object less commonly used is a polynomial representation of the state. It is

a polynomial in the mode operators that define the state. A general state would then be:

ρ =
d−1∑

n1, n2, ..., nK

m1,m2, ...,mK

f(n1, n2, ..., nK ,m1, ...,mK) a†n1

1 a†n2

2 ...a†nKK |0〉〈0| bm1
1 bm2

2 ...bmKK
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and its description as a poly object:

poly(ρ) =
d−1∑

n1, n2, ..., nK

m1,m2, ...,mK

f(n1, n2, ..., nK ,m1, ...,mK) an1
1 a

n2
2 ...a

nK
K bm1

1 bm2
2 ...bmKK

(note that the commutation relations are not taken care of in poly objects).

C.3.2 Declare, Propagate, Measure and Ask

Quantavo contains various procedures that allow problems to be formulated as follows:

1. Declare the initial state.

2. Apply different transformations to it (Beam Splitter, Phase Shifter, Arbitrary Uni-

tary, ...).

3. Measure certain modes (and trace out the inaccessible ones), find out probabili-

ties.

4. Ask different questions about the properties of the state: Display, Plot, evaluate

certain measures of Entanglement, etc..

Additionally, the order in which we use these procedures can be changed and the

questions in item (4) can be formulated at any intermediate time. In addition, more states

can be tensored or added at later times. Finally there are procedures to interconvert mat,

vec, matcol and poly. Let us then give a more detailed description of these four basic

steps.

Declaration

There are different ways to declare a state, all depending on its characteristics.

Pure States
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For pure states of known functional form. That is, if we have a state of the form:

|ψ〉 =
d∑

n1,n2,...,nK

f(n1, n2, ..., nK)|n1, n2, ..., nK〉 (C.1)

and we know explicitly f(n1, n2, ..., nK) we may use the following structure:

Declare the number of modes “K”, the maximum number of photons “d”, and make

a loop to declare the elements. For example:

d := 4;

K := 3;

V:=Matrix(dK , 2):

There are now 2dK elements to be specified.

for i from 1 to d do

for j from 1 to d do

for k from 1 to d do

V[i,1]:=f (i,j,k):

V[i,2] :=[i,j,k]:

end do:

end do:

end do:
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Where f is the function in eq.(C.1). We may use the procedure deltaK(i,j) if we

need a Kronecker delta in our definition. Executing the above loop will declare a matrix

V of size dK × 2 that has hopefully many zero entries. To get rid of the zero entries

and convert this object into a vec object (or trimmed vector) we will use the procedure

Trim:

V1:=Trim(V):

Another way to proceed is to declare the object vec directly with an appropriate func-

tion. Consider as an example the state:

|ψ〉 =
3∑

n=0

λn|n, n, 0〉

In this case it is easy to declare the object vec directly as:

V1:=Matrix(4,2):

for i from 1 to 4 do

V1[i,1]:=λi−1:

V1[i,2]:=[i-1,i-1,0]:

end do:

However this is not always the case and if we have a pure state with no known f(n1, n2, ..., nK),

but we know which non-zero elements it contains, we can declare its elements one by

one or declare the vec matrix at once. For example to declare

|ψ〉 = |00〉+ λ|11〉+ λ2|21〉
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we can use:

d:=2:

K:=2:

V:=Matrix(3,2):

V[1,1]:=1:

V[1,2]:=[0,0]:

V[2,1]:=λ:

V[2,2]:=[1,1]:

V[3,1]:=λ2:

V[3,2]:=[2,1]:

or

d:=2:

K:=2:

V:=Matrix([ [1,[0,0]], [λ,[1,1]], [λ2,[2,1]] ]):

or

d:=2:

K:=2:

V:=<<(1, λ, λ2)> | <[0, 0], [1, 1], [2, 1]>>:

Adding StateNormalize(V) for normalization.

A special family of pure states are readily available in Quantavo:
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Squeezed vacuum:

for a truncated, unnormalized, pure single mode squeezed vacuum state |φ〉 ∼
∑d−1

n=0 λ
n|n〉

type:

SqueezedVac(1, d, λ);

for a truncated, unnormalized, pure two mode squeezed vacuum state

|φ〉 ∼
∑d−1

n=0 λ
n|n, n〉 type:

SqueezedVac(2, d, λ);

These states are given without normalization, since for finite d,
√

1− λ2 doesn’t nor-

malize them. Calculations and displays are easier this way.

Coherent States:

for a truncated single mode coherent state |φ〉 =
∑d−1

n=0
αn√
n!
|n〉 type:

CoherentState(1, d, α);

The analytical normalization is rather lengthy so it is left unnormalized. Normaliza-

tion can be done at a later time with StateNormalize.

It is also possible to tensor some vacuum modes to our state. The procedure TensorVac(ψ,

s) effectively does the following transformation: |ψ〉 −→ |ψ〉 ⊗ |0〉⊗s when applied ei-
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ther to a vec, mat or matcol (see appendix for more details).

Tensor Product:

The procedure TensorProduct(A, ListA, B, ListB) will make the tensor product

between modes [ListA] of state A and modes [ListB] of state B. So for example,

Co:=CoherentState(1, 4, α);

Fock:=Matrix([1,[1]]);

State:=TensorProduct(Co,[1],Fock,[2]);

will result in the following vec object,

State =



1 [0, 1]

α [1, 1]

1/2α2
√

2 [2, 1]

1/6α3
√

6 [3, 1]


Mixed States

The generalized states (either pure or mixed) we are interested in can be written as:

ρ =
d−1∑
bn,bm g(n̂, m̂)|n̂〉〈m̂| (C.2)

where n̂ and m̂ stand for n1, n2, ..., nK and m1,m2, ...,mK respectively. The density

matrix for these states is dK × dK dimensional which is in general too large for the

computer to handle. We will therefore describe these states using mat, matcol or poly.
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objects.

Two main strategies can be used to declare our states:

1. If our starting state is pure and will become mixed later, we can declare a pure vec

object and then convert it into a mat or matcol when needed. All procedures to

convert are named in the intuitive way: “object2object”. This way to con-

vert vec into mat we have the procedure vec2mat, to convert mat into matcol,

mat2matcol and so on for all objects and conversions. Therefore, once our

pure state vector V has been declared we can do the following:

V1:=Trim(V): #eliminate non-zero entries

M1:=vec2mat(V1): #convert it to a density matrix

or

V1:=Trim(V):

M1col:=vec2matcol(M1):

2. if our starting state is mixed to begin with, we can declare our initial state as the

object mat or matcol. To do so, if we know the functional form of g(n̂, m̂) in

eq.(C.2) then we may directly declare our state. For example to declare the state:

ρ =
4∑

n,m=0

λn+m|n, n, 0〉〈m,m, 0|

We could use:
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M1col:=Matrix(3,25):

for i from 1 to 5 do

for j from 1 to 5 do

M1col[i,1]:=λi+j−2;

M1col[i,2]:=[i-1,i-1,0];

M1col[i,3]:=[j-1,j-1,0];

end do:

end do:

or

V1:=SqueezedVac(2, 4, lambda):

V1:=TensorVac(V1, 1):

M1col:=vec2matcol(V1):

or yet again, meaning ρ =
[(∑4

n=0 λ
n|n〉

)
⊗
(∑4

m=0 λ
m|m〉|0〉

)]
[c.c.]

V1:=SqueezedVac(1, 5, lambda):

V2:=SqueezedVac(1, 5, lambda):

V2:=TensorVac(V2, 1):

V3:=TensorProduct(V1,[1],V2,[2,3]);

M1col:=vec2matcol(V3):

The basic conclusion is that there is no single way of declaring our state and that

depending on its structure we have to find a clever way of declaring it. As a general

guideline, small states without an obvious functional structure can be declared giving

all elements. Medium sized pure states can be declared using a clever loop, ‘trimmed’
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and transformed to vec, mat or matcol.

It is worth noting that when using the built-in declaration procedures such as SqueezedVac,

CoherentState, TensorVac, Vac, or the inter-converting ones like mat2matcol,

mat2poly, vec2mat, etc, the values of K and d are automatically updated. How-

ever, if the states are declared from scratch, the values of K and d should be explicitly

declared. Applying to our state ρ the procedure findKnd(ρ) can help troubleshoot by

reevaluating the value of these global variables.

Evolution

Beam Splitter

We can apply a beam splitter to a vec or matcol state V with the BS procedure:

V1:= BS( V , i , j ):

Where i, j specify which modes the beam splitter acts on. It is therefore essential

to carefully label the modes of our quantum optical circuit. This will effectively do the

following mode transformation:

 a′i

a′j

 =

 t r

−r t

 ai

aj

 (C.3)

Leaving ‘t’ and ‘r’ as unevaluated variables. If we want to use different reflectivi-

ties and transmittivities for our Beam Splitter (variables or numbers) we may use myBS

and input ‘t = t0’ and ‘r = r0’ as follows:
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V1:= myBS( V , i , j , t0 , r0 ):

For the mixed state object matcol we may use the same procedures and the effective

transformation will be:

 a′i

a′j

 =

 t r

−r t

 ai

aj

 (C.4)

 b′i

b′j

 =

 t∗ r∗

−r∗ t∗

 bi

bj

 . (C.5)

Further details about its use can be found in the example in section (C.4)

Phase Shifter

The phase shifter procedure (PS) can be used with mixed and pure states:

V1:= PS( vec/matcol , i ,φ ):

The input vec/matcol means that either vec or matcol objects can be given as inputs.

This procedure makes the effective transformation:

a′i = eiφai (C.6)

b′i = e−iφbi (C.7)

Build Unitary
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If we wish to construct a unitary matrix that transforms the modes of light and de-

scribes a given linear optics (LO) circuit we may use the procedure BuildUnitary.

Together with UnitaryEvolution it will evolve the state through a given LO cir-

cuit. To build a unitary consisting of Beam Splitters (BS) and Phase Shifters (PS) we

will do the following:

U:= BuildUnitary([List]):

This will create a matrix U of dimension K×K, that later will transform the K modes.

The list that is BuildUnitary’s input must have a precise format. It must be a list of

lists. For example: List:=[[1,2,t,r],[3,phi],[3,4,q]];

means that first a BS with transmitivity t2 and reflectivity r2 will be applied to modes

1 and 2, then a PS will be applied to mode 3 and finally a BS with transmitivity q2 and

reflectivity (1 − q2) will be the last operation. If we have 4 modes, this will build the

matrix

U =



t r 0 0

−r t 0 0

0 0 eiφq eiφ
√

1− q2

0 0 −
√

1− q2 q



=



1 0 0 0

0 1 0 0

0 0 q
√

1− q2

0 0 −
√

1− q2 q





1 0 0 0

0 1 0 0

0 0 eiφ 0

0 0 0 1





t r 0 0

−r t 0 0

0 0 1 0

0 0 0 1


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In general, in our list of lists, lists with 4 elements, like [i, j, t, r] build BS transforma-

tions between modes i and j, lists with 3 elements like [i, j, t] build BS transformations

for modes i and j such that r =
√

1− t2, and lists with two elements like [i, φ] build

PS transformations on mode i.

UnitaryEvolution

Whether we have just built a unitary matrix with BuildUnitary or we have a K×K

arbitrary unitary matrix to transform our modes {ai}, we can use this procedure as fol-

lows:

V:= UnitaryEvolution(U, vec/matcol):

where U is the unitary matrix of dimension K × K and our state is described by a

vec or a matcol object. This will effectively implement the mode transformation:

a′ = Ua

b
′†

= U †b
†

Measurement

The Project Procedure:

If we wish to know the state after a projective measurement we may use the procedure

Project. Depending on the inputs we give to the procedure it will do a projective

measurement and return a density matrix (matcol) or state vector (vec). Below is a

description of its different uses:

1. if given (vec1, list, vec2) and say vec1 and vec2 describe respectively |ψ1〉 and
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|ψ2〉, Project(vec1, list, vec2) returns the vec (in principle unnormalized) cor-

responding to the expresion:

|ψ′2〉 = (|ψ1〉〈ψ1|list ⊗ 1Irest) |ψ2〉

As an example consider list=[2,3] meaning that we want to measure modes two

an three. The vec object that corresponds to the projector |ψ1〉〈ψ1| must therefore

have kets with 2 modes.

For example, if |ψ2〉 is

V 2 :=


1 |0000 >

x |1100 >

x2 |2200 >


and |ψ1〉 is

V 1 :=
[

1 |10 >
]

Then,

S := Project(V1, [2,3], V2);

will return:

S =
[
x |1100 >

]
2. if given (matcol 1, list, vec 2) and say matcol 1 and vec 2 describe Mn and |ψ2〉

then it will return the matcol object:

ρ = (Mnlist ⊗ 1Irest) |ψ2〉〈ψ2| (Mnlist ⊗ 1Irest)
†
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So for example, taking the same V2 as above and the Kraus Operator (or projec-

tor):

M :=

 1 [1, 1] [1, 1]

1 [0, 0] [0, 0]


Then,

S := Project(M, [1,2], V2);

will return the state:

S =



1 [0, 0, 0, 0] [0, 0, 0, 0]

x̄ [0, 0, 0, 0] [1, 1, 0, 0]

x [1, 1, 0, 0] [0, 0, 0, 0]

xx̄ [1, 1, 0, 0] [1, 1, 0, 0]


which is the density matrix corresponding to:

S =

 1 [0, 0, 0, 0]

x [1, 1, 0, 0]



3. if given (vec 1, list, matcol 2) and say vec 1, matcol 2 describe |ψ1〉 and ρ re-

spectively, then it will build |ψ1〉〈ψ1| and return the matcol object corresponding

to:

ρ′ = (|ψ1〉〈ψ1|list ⊗ 1Irest) ρ (|ψ1〉〈ψ1|list ⊗ 1Irest)
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4. if given (matcol 1, list, matcol 2) and say matcol 1 and matcol 2 describe Mn

and ρ respectively, then it will return:

ρ′ = (Mnlist ⊗ 1Irest) ρ (Mnlist ⊗ 1Irest)
†

(see further down for POVM measurements)

In a nutshell:

Project(|ψ1〉, list, |ψ2〉) → (|ψ1〉〈ψ1|list ⊗ 1Irest) |ψ2〉

Project(Mn, list, |ψ2〉) → (Mnlist ⊗ 1Irest) |ψ2〉〈ψ2| (Mnlist ⊗ 1Irest)
†

Project(|ψ1〉, list, ρ ) → (|ψ1〉〈ψ1|list ⊗ 1Irest) ρ (|ψ1〉〈ψ1|list ⊗ 1Irest)

Project(Mn, list, ρ ) → (Mnlist ⊗ 1Irest) ρ (Mnlist ⊗ 1Irest)
†

If we encounter a destructive measurement, it is possible to trace out the measured

modes with the Traceout procedure (cf. appendix). Also POVMresult traces out

the measured modes (see next section). We may otherwise calculate the full trace of a

mat or matcol object with StateTrace or multiply vec and matcol in different or-

ders thanks to StateMultiply.

The Probability Procedure:

This procedure will calculate the probability of a measurement result or an expected

value. It considers the same cases and objects as the above Project procedure. It

uses the definition,
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P =
Tr {Enρ}

Tr {ρ}

and assumes that {En} safisfy En ≥ 0 and
∑

nEn = 1I to calculate probabilities.

Therefore, one should verify that these conditions hold for the matrices describing En

in order to obtain meaningful probabilities. Below we show more details for different

inputs:

Probability(|ψ1〉, list, |ψ2〉) → Tr {(|ψ1〉〈ψ1|list ⊗ 1Irest) |ψ2〉〈ψ2|}
Tr {|ψ2〉〈ψ2|}

where (|ψ1〉, |ψ2〉) are converted to matcol objects in an intermediate step. One should

pay attention to the choice of the projection operator |ψ1〉〈ψ1|. If it is not nomalized it

can give unphysical values for the probability.

Now for a given POVM or Projector,

Probability(En, list, |ψ2〉) → Tr {(En list ⊗ 1Irest)|ψ2〉〈ψ2|}
Tr {|ψ2〉〈ψ2|}

Or given a vec and a density operator matcol:

Probability(|ψ1〉, list, ρ ) → Tr {(|ψ1〉〈ψ1|list ⊗ 1Irest) ρ}
Tr {ρ}

where |ψ1〉 has been converted to a matcol object.

And finally for a POVM and a density operator:

Probability(En, list, ρ ) → Tr {(En list ⊗ 1Irest) ρ }
Tr { ρ }
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POVM measurements

Quantavo possesses a procedure to describe POVM measurements. If our state before

the measurement is |ψ〉 or ρ, and the POVM elements are described by the set {Em},

satisfying
∑

mEm = 1I and Em ≥ 0. Then the state after the measurement will be:

ρ′ = Tr i,j,..k {Em ρ}

or

ρ′ = Tr i,j,..k {Em|ψ〉〈ψ|}

assuming Tr {ρ} = 1 or Tr {|ψ〉〈ψ|} = 1.

This will be implemented by the procedure POVMresult which will take as inputs,

POVMresult(matcol, List, matcol/vec)

and implement the operation,

POVMresult(Em, List, ρ) =
Tr List {(EmList ⊗ 1Irest) ρ}

Tr {ρ}
where ‘rest’ are all the indexes not included in ‘List’.

Declaring POVMs

The matcol objects that represent POVM operators need to be declared. One option is

to declare them as standard states and convert them to matcol. Since avalanche photo

diode detectors (APDs) are a standard tool in quantum optics, an interactive tool to de-
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clare them is also provided. Executing,

APD();

Will bring up an interactive menu, where we can choose if we want the |0〉〈0| or

1I− |0〉〈0| event, how many photons we will consider and what loss should be added to

it. For example choosing the input (0, r, 4) will return,

π0 =



1 [0] [0]

r2 [1] [1]

r4 [2] [2]

r6 [3] [3]

r8 [4] [4]


and choosing (1, r, 4) will return,

π1 =



1− r2 [1] [1]

1− r4 [2] [2]

1− r6 [3] [3]

1− r8 [4] [4]


recovering the expected π0 + π1 = 1I. Note the convention for the BS in front of the

detector for which r = 0 is a perfect detector and r2 + t2 = 1.

These are therefore the main tools to describe and simulate quantum measurements

in this framework.
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State Properties

Some questions that will interest us will concern hermiticity, normalization and entan-

glement measures. So far, Quantavo has the following useful procedures:

IsHermitian to check for selfadjointness,

IsNormalized to check for normalization,

StateNormalize to normalize mat, matcol or vec

StatePartialTranspose to partial transpose ρΓ

Negativity to calculate the negativity as the sum of all negative eigenvalues of the

partial transposed density matrix.

LogNegativity to calculate the Logarithmic Negativity.

StateApprox to do symbolic or numeric approximations transforming our matcol or

vec state.

For practical examples on how to use them one can refer to the following section.

Otherwise, a detailed dictionary of procedures can be found in the appendix.

C.4 Practical Example

C.4.1 Squeezed state photon subtraction

Our initial state is a pure two mode squeezed state that can be described by |ψλ〉 =
√

1− λ2
∑∞

n=0 λ
n|n, n〉. We would like to declare it and propagate it through the cir-

cuit presented in fig. C.1. We observe that our initial state has three modes, one of

which is a vacuum mode. We can work out as an example the state with up to 4 photons:
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Figure C.1: Setup of the photon subtraction.

# Create a truncated two mode squeezed vacuum state

V := SqueezedVac(2, 5, lambda);

# Then add the vacuum mode:

V := TensorVac(V,1);

This will output state:

V :=



1 [0, 0, 0]

λ [1, 1, 0]

λ2 [2, 2, 0]

λ3 [3, 3, 0]

λ4 [4, 4, 0]


We then apply the corresponding beam splitter transformation (if “d” changes from

the BS transformation, it is automatically recalculated after the BS operation and reset

to its new value. In this case it doesn’t change).

V1:=BS(V,1,3);
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which returns, if displayed with “Display State”, that is Dstate(V1), the following

output:

V 1 =



1 “|000 >′′

λ t “|110 >′′

λ2t2 “|220 >′′

λ3t3 “|330 >′′

λ4t4 “|440 >′′

λ r “|011 >′′

√
2λ2tr “|121 >′′

√
3λ3t2r “|231 >′′

2λ4t3r “|341 >′′

λ2r2 “|022 >′′

√
3λ3tr2 “|132 >′′

√
6λ4t2r2 “|242 >′′

λ3r3 “|033 >′′

2λ4tr3 “|143 >′′

λ4r4 “|044 >′′


Measurements:

First we will consider the case of a perfect photon number resolving detector. The

projector |1〉〈1| can simply be introduced as:
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Proj:=Matrix([1,[1]]);

And the state after the measurement will be obtained with:

V2:=Project(Proj,[3],V1);

returning:

V 2 =



λ r [0, 1, 1]

√
2λ2tr [1, 2, 1]

√
3λ3t2r [2, 3, 1]

2λ4t3r [3, 4, 1]


We may now trace-out the measured mode. Tracing out can then be done as follows:

M1:=Traceout(V2,3);

We may also simulate a measurement with an avalanche photo-diode described by

the Kraus Operator: Ô = 1I− |0〉〈0|. That is, if the state “V1” represents the state ρ, we

want to find the state ρ′ resulting from the measurement:

ρ′ ∼
(
Ô3 ⊗ 1I1,2

)
ρ
(
Ô3 ⊗ 1I1,2

)†
For this simple example we have at most 4 photons so we will approximate Ô '

|1〉〈1|+ |2〉〈2|+ |3〉〈3|+ |4〉〈4|. Therefore to measure mode 3 we construct the associ-
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ated POVM which can then be expressed as a matcol object:

POVM := Matrix(4, 3);

for i from 1 to 4 do

POVM[i,1]:=1:

POVM[i,2]:=[i]:

POVM[i,3]:=[i]:

od:

And the state after a ‘click’ in the detector (tracing out this inaccessible mode) will

be:

M2:=Project(POVM,[3],V1):

M3:=Traceout(M2,3):

or directly

M3:=POVMresult(POVM,[3],V1):

Approximations:

M3 has 30 coefficients. We may want to use the approximation procedures to sim-

plify our calculations. If for example we know that r << 1 and λ << 1 we may wish

to delete all terms in the density matrix for which the coefficients containing rnλm sat-
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isfy n+m > 7 (therefore getting rid of all the small terms up to the chosen order). The

procedure StateApprox can be used for this purpose. This way,

M4:=RealDomain:-simplify(M3): # assume real variables for

simplicity

M5:=StateApprox(M4,[lambda,r], 7);

Will deliver

M5 =



λ2r2 [0, 1] [0, 1]

√
2λ3tr2 [0, 1] [1, 2]

λ4t2r2
√

3 [0, 1] [2, 3]

2λ5t3r2 [0, 1] [3, 4]

√
2λ3tr2 [1, 2] [0, 1]

2λ4t2r2 [1, 2] [1, 2]

√
6λ5t3r2 [1, 2] [2, 3]

λ4t2r2
√

3 [2, 3] [0, 1]

√
6λ5t3r2 [2, 3] [1, 2]

2λ5t3r2 [3, 4] [0, 1]


See the dictionary in the appendix for details on how to use the StateApprox proce-

dure.

Entanglement

We may now compute different properties of this state as for example the Negativity.

We take the state after the detection of exactly one photon and obtain:
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Neg:=simplify(Negativity(M1)) assuming t::positive, r::positive,

lambda::positive;

which will return:

Neg =
λ t
(
2λ2t2 +

√
2 +
√

3λ t+
√

3λ2t2
√

2 + 2λ3t3
√

2 + 2λ4t4
√

3
)

4λ6t6 + 3λ4t4 + 2λ2t2 + 1

The eigenvalues can be hard to find if our state has symbolic entries with complex conju-

gation. A previous simplification (assuming real variables) can help, but other solutions

are possible. This explicit expression allows us to plot different values of the negativity

for various ranges of parameters:

plot3d(Neg(λ,t,
√

1− t2), λ=0..1,t=0..1, axes=boxed);

will display the plot in fig C.2.:

Figure C.2: Logarithmic Negativity (t, λ).

Further details, examples and documentation can be found on the website of the Im-

perial College London quantum information group,

http://www.imperial.ac.uk/quantuminformation/research/downloads
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.1 Dictionary of Procedures:

A quick reference list is provided and an alphabetically ordered dictionary follows.

Objects Appearance Declaration

vec ψ =



1 [0, 0, 0]

λ [1, 1, 0]

λ2 [2, 2, 0]

λ3 [3, 3, 0]



vec:=CoherentState(K,d,α)

vec:=SqueezedVac(K,d,λ)

vac:=Vac(K);

vec1:=TensorVac(vec,m)

vec1:=TensorProduct(V,[1,2],W,[3,4])

vec:=Trim(V)

mat ρ =


0 [0, 0, 0] [1, 1, 0]

[0, 0, 0] 1 λ̄

[1, 1, 0] λ λ λ̄


mat:=vec2mat(vec)

mat:=matcol2mat(matcol)

or direct declaration of the

Matrix

matcol ρmatcol =



1 [0, 0, 0] [0, 0, 0]

λ̄ [0, 0, 0] [1, 1, 0]

λ [1, 1, 0] [0, 0, 0]

λ λ̄ [1, 1, 0] [1, 1, 0]

λ2λ̄2 [2, 2, 0] [2, 2, 0]



matcol:=vec2matcol(vec)

matcol:=mat2matcol(mat)

or direct declaration of the

3 column Matrix
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ready made states are:

CoherentState(K, d, α) ∼
d−1∑
n=0

αn√
n!
|n〉⊗K

SqueezedVac(K, d, λ) ∼
d−1∑
n=0

λn|n〉⊗K

TensorVac(vec,m) : |φ〉 → |φ〉 ⊗ |0〉⊗m

IdentityState(d,K) ∼ 1IdK×dK

A

APD(0/1,r,N): This procedure is interactive and is called by executing,

APD();

It declares the POVM describing a lossy avalanche photo diode detector (APD). The input “0”

or “1” will select between the no-click or click events respectively. “r” will be the amplitude r

of the reflectivity R = r2 of the BS in front of the detector characterizing its loss, and N will be

the maximum number of photons. For example choosing the input (0, r, 4) will return,

π0 =



1 [0] [0]

r2 [1] [1]

r4 [2] [2]

r6 [3] [3]

r8 [4] [4]


and choosing (1, r, 4) will return,

π1 =



1− r2 [1] [1]

1− r4 [2] [2]

1− r6 [3] [3]

1− r8 [4] [4]


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recovering the expected π0 + π1 = 1I.

[ Input: ({0, 1}, r ∈ [0, 1], positive integer), Output: Matrix, Calls: Quantavo, LinearAlge-

bra]

B

BS(vec/matcol, i, j): This will effectuate the Beam Splitter transformation:

 a′i

a′j

 =

 t r

−r t

 ai

aj

 (8)

 b′i

b′j

 =

 t∗ r∗

−r∗ t∗

 bi

bj

 . (9)

for the chosen modes. That is eq. (8) for objects of type vec and eq. (8) and (9) for objects

of type matcol. The value of ‘d’ and ‘K’ are evaluated and reset to the actual value after this

operation.

[ Input: (Matrix, integer, integer), Output: Matrix, Calls: Quantavo, LinearAlgebra, poly2matcol,

matcol2poly, matcolBS, vecBS]

BuildUnitary(list of lists): This procedure will build a K × K unitary matrix

corresponding to a linear optics circuit consisting of beam splitters (BS) and phase shifters (PS).

To do so a list of lists must be provided. The lists inside the list can have 2, 3, or 4 elements, and

should be in the same order as we want to apply those transformations in the circuit. Lists with

2 elements will be considered PS and lists with 3 or 4 elements as BS:

The list [i, ξ] will implement a PS on mode i.

The list [i,j,t] will implement a BS on modes i and j with transmittivity t2 = T and reflectivity

R = 1− T = 1− t2.
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The list [i,j,t,r] will implement a BS on modes i and j with transmittivity t2 = T and reflectivity

r2 = R.

To implement the transformations one after another we can give for example the input

list = [[i1, ξ],[i2, j2, t],[i3, j3, t, r],[i3,φ]].

[ Input: List, Output: Matrix, Calls: Quantavo, LinearAlgebra]

C

CoherentState(m,d,α): This procedure builds an object of type vec that describes

the state |φ〉 =
∑d−1

n=0
αn√
n!
|n〉⊗m. It is not normalized

[ Input: (whole number, whole number), Output: Matrix, Calls: Quantavo, LinearAlgebra]

D

DP(Matrix, Matrix): This procedure makes the Kronecker/Direct/Tensor product be-

tween any two matrices. As long as it is declared as a matrix, it can also make the Kronecker

product between vectors and matrices. The vector, however would have to be declared as a Ma-

trix. For example as V := Matrix([[1], [2], [0], [a]]).

[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra]

DeltaK(i, j): This procedure takes the Kronecker Delta from two inputs. It works both

symbolically and numerically. For example:

deltaK(1,1)=1, deltaK(1,2)=0,

deltaK(a,a)=1, (even if a is not specified).

deltaK(a,b); will return Quantavo:-deltaK(a, b)

However, if we execute “a:=b;” and evaluate it again it will be 1

[ Input: (string or number, string or number), Output: 0,1, unevaluated string, Calls: Quantavo]

Dbra(List): This is a Display procedure. When given a list which stands for a bra, for

example List =[0,1,3] it builds a bra for display and returns 〈013|.
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[ Input: List, Output: 〈 string|, Calls: Quantavo].

Dbraket(List, List): This is a Display procedure. When given two lists which stand

for a ket and a bra it returns a |ket〉〈bra|. for example IList=[0,1,1] and JList =[0,1,3] then

Dbraket(IList,JList) =|011〉〈013|.

[ Input: (List, List), Output: |string〉〈 string|, Calls: Quantavo]

Dket(List): This is a Display procedure: When given a list which stands for a ket, for

example List =[0,1,3] it builds a ket for display and returns |013〉.

[ Input: List, Output: | string〉, Calls: Quantavo]

Dstate(vec/mat/matcol): This is a Display procedure. When given either a mat,

vec or matcol object it transforms the lists of modes into bras and kets. For example if it is

given the object mat:

ρ =


0 [0, 0, 0, 0] [1, 1, 0, 0]

[0, 0, 0, 0] 1 λ̄

[1, 1, 0, 0] λ λ λ̄


it will display bras and kets in the following way:

Dstate(ρ) =


0 < 0000| < 1100|

|0000 > 1 λ̄

|1100 > λ λ λ̄



[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra]

E

Energy(vec/matcol): This will output the expected value of the energy of our state
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defined as,

〈Ê〉 = 〈ψ|Ê|ψ〉

with

〈Ê〉 = ~ν Tr
{

(a†a+ 1/2)ρ
}

or for multipartite states,

〈Ê〉 = ~ν Tr
{

(N̂1 + N̂2 + ...+ N̂K +K/2)ρ
}

[ Input: Matrix, Output: Number or Analytic Expression, Calls: Quantavo, LinearAlgebra]

Entropy(vec/matcol): This will output the entropy of our state defined as,

S =
∑
i

λilog2(λi)

where λi are the eigenvalues. The procedure transforms the objects vec or matcol into a mat

density matrix and then finds the eigenvalues.

[ Input: Matrix, Output: Number or Analytic Expression, Calls: Quantavo, LinearAlgebra]

EvalState(vec/matcol): This simply applies the Maple function evalf to the first

column of our vec or matcol objects.

[ Input: Matrix, Output: Number or Analytic Expression, Calls: Quantavo, LinearAlgebra]

F

findKnd(vec/matcol/mat): This will search through the given state to find the num-

ber of modes K and the dimension of the modes d. It updates these global variables with the K

and d found and displays them as output

[ Input: Matrix, Output: (K,d), Calls: Quantavo, LinearAlgebra] findKnd

I
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IdentityState(Nr of photons, Nr of modes): This will declare an identity

matrix represented as a matcol object. For example, for (2,2) as input we will obtain

1I =



1 [0, 0] [0, 0]

1 [0, 1] [0, 1]

1 [0, 2] [0, 2]

1 [1, 0] [1, 0]

1 [1, 1] [1, 1]

1 [1, 2] [1, 2]

1 [2, 0] [2, 0]

1 [2, 1] [2, 1]

1 [2, 2] [2, 2]


.

[ Input: (integer,integer), Output: Matrix, Calls: Quantavo, LinearAlgebra]

indexstate(vec/matcol): This procedure will transform the last two columns of

a vec or matcol object. Each list containing the number of photons in each mode will be trans-

lated into a natural number with the procedure VectorRow(List,d). This number will indicate

the order in which the modes are ordered. In effect it does a number basis change from a d-base

to a 10-base. For example,
1 [0, 0]

ξ [1, 1]

ξ2 [2, 2]

 −→


1 1

ξ 5

ξ2 9


[ Input: 3 column Matrix, Output: 3 column Matrix, Calls: Quantavo, LinearAlgebra]

IsHermitian(matcol/mat): This procedure verifies if its input describes a Her-

mitian state. Therefore if the density matrix it represents verifies ρ+ = ρ. If it is Hermitian the

value returned will be 0, otherwise it will be 1. Maple might not recognize products of conju-
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gated complex variables as equal, so one has to make sure they are simplified.

[ Input: Matrix, Output: 0 or 1 and printed answer, Calls: Quantavo, LinearAlgebra]

IsNormalized(vec/matcol/mat): This procedure checks if the considered object

is normalized. Therefore for vec if 〈ψ|ψ〉 = 1, for matcol and mat if Tr(ρ)=1. If the state is not

normalized it will return its norm or trace.

[ Input: Matrix, Output: printed answer, Calls: Quantavo, LinearAlgebra]

L

LogNegativity(vec/matcol/mat): This procedure evaluates the Logarithmic neg-

ativity according to:

LogNegativity(M) := log2(2 ∗Negativity(M) + 1)

See Negativity for further details.

[ Input: Matrix, Output: Expression or number, Calls: Quantavo, Negativity]

M

matcol2mat(matcol): This translation procedure takes an object of type matcol and

converts it into an object of type mat. To do so, it sorts the matcol object, counts the number of

different bras and kets needed and constructs the hermitian matrix mat with the least number of

zeros containing all the elements of matcol

[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra, StateSort]

matcol2poly(matcol): This translation procedure takes an object of type matcol

and converts it into an object of type poly. To do so it looks at the |ket〉 and 〈bra| of each row

of the Matrix and builds the associated monomial with its corresponding coefficient.

[ Input: Matrix, Output: Polynomial, Calls: Quantavo, LinearAlgebra]

mat2matcol(mat): This translation procedure takes an object of type mat and con-
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verts it into an object of type matcol

[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra, Trim]

mat2poly(mat): This translation procedure takes an object of type mat and converts

it into an object of type poly

[ Input: Matrix, Output: polynomial, Calls: Quantavo, LinearAlgebra]

modesmatcol(matcol with numbers): This procedure is the inverse of the pro-

cedure indexmatcol. It will transform a 3 column matrix, that has numbers in the 2nd and

3rd column to one that has the equivalent modes (lists with the number of photons)

[ Input: 3 column Matrix, Output: 3 column Matrix, Calls: Quantavo, LinearAlgebra]

myBS(matcol/vec, i, j, t, r): This procedure is the same as BS, but it gives the user the

option to choose the transmittivity T = t2 and reflectivity R = r2 of the beam splitter.

[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra, poly2matcol, matcol2poly,

mymatcolBS, myvecBS]

N

Negativity(vec/matcol/mat): This procedure finds the eigenvalues of the partial

transposed density matrix, and calculates the sum of all the corresponding non-negative eigen-

values (it also divides by the Trace of the state in case it is not normalized):

Negativity =
1

Tr(ρ)

∑
i

|λi| − λi
2

where λi are the eigenvalues of the partially transposed density matrix

[ Input: Matrix, Output: Expression or number, Calls: Quantavo, LinearAlgebra, StatePartial-

Transpose]

P
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PlotState(vec/matcol/mat, w, h): The coefficients of our states need to be real

numbers before we can plot the state vector or density operator.

The procedure will plot a vec object as a bar diagram. In the abscissa, all possible kets be-

tween |0, 0, .., 0〉 and |(d− 1), (d− 1), ..., (d− 1)〉 are labeled from 1 to dK . For example,


1.0 |0000 >

0.5 |1100 >

0.25 |2200 >



with K=2 and d=3, will be displayed as shown in Fig. 3:

Figure 3: Plot for a pure state (vec object).

To plot a matcol object, the width w and height h of the bars in the bar diagram must be given

as inputs (w=0.5 is the maximum width for the columns not to overlap). A 3D plot will be the

output. Bras and kets will also be labeled from 1 to dK . The density matrix for the above state

(w=0.5, h=10) is shown in Fig. 4:

[ Input: (Matrix, width, height), Output: , Calls: plots, geom3d, Quantavo, LinearAlgebra]

poly2matcol(poly): This procedure transforms a polynomial of the modes
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Figure 4: Plot for a density matrix (matcol/mat object).

Poly =
d∑

m1,m2,..,mK

d∑
n1,n2,..,nK

f(n̂, m̂)
K∏
j=1

a
nj
j b

mj
j into an object of type matcol

[ Input: polynomial, Output: Matrix, Calls: Quantavo, LinearAlgebra]

poly2vec(poly): This procedure transforms a polynomial of the modes

Poly =
d∑

n1,n2,..,nK

f(n̂)
K∏
j=1

a
nj
j into an object of type vec

[ Input: polynomial, Output: Matrix, Calls: Quantavo, LinearAlgebra]

POVMresult(matcol, List, vec/matcol): If our state before the measurement

is |ψ〉 or ρ, and the POVM elements are described by the set {Em} then the unnormalized state

after the measurement will be:

POVMresult(Em, List, ρ) = Tr List {(EmList ⊗ 1Irest) ρ}

where ‘rest’ are all the indexes not included in ‘List’.

[ Input: Matrix, List, Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra]

Probability(vec/matcol, List, vec/matcol): This procedure will calculate

the probability of a measurement result or an expected value. It considers the same cases and

objects as the Project procedure. It uses the definition,

P =
Tr {Enρ}

Tr {ρ}
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and assumes En ≥ 0 and
∑

nEn = 1I to calculate probabilities. Therefore, one should verify

that these conditions hold for the matrices describing En in order to obtain meaningful proba-

bilities. Below we show more details for different inputs.

Probability(|ψ1〉, list, |ψ2〉) →
Tr {(|ψ1〉〈ψ1|list ⊗ 1Irest) |ψ2〉〈ψ2|}

Tr {|ψ2〉〈ψ2|}

where (|ψ1〉, |ψ2〉) are converted to matcol objects in an intermediate step. One should pay

attention to the choice of the projection operator |ψ1〉〈ψ1|. If it is not nomalized it can give

unphysical values for the probability.

Now for a given POVM or Projector,

Probability(En, list, |ψ2〉) → Tr {En|ψ2〉〈ψ2|}
Tr {|ψ2〉〈ψ2|}

where En is assumed to be a matcol object.

Or given a vec and a density operator matcol:

Probability(|ψ1〉, list, ρ ) →
Tr {(|ψ1〉〈ψ1|list ⊗ 1Irest) ρ}

Tr {ρ}

where |ψ1〉 has been converted to a matcol object.

And finally for a POVM and a density operator:

Probability(En, list, ρ ) → Tr {(En ⊗ 1Irest) ρ }
Tr { ρ }

[ Input: (Matrix, list, Matrix), Output: Expression or number, Calls: Quantavo, LinearAl-

gebra, StateTrace, StateNormalize, vec2matcol]
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Project(vec/matcol, list, vec/matcol): This procedure returns the state after

a measurement in the following cases:

1. if given (vec1, list, vec2) and say vec1 and vec2 describe respectively |ψ1〉 and |ψ2〉,

Project(vec1, list, vec2) returns the vec (in principle unnormalized) corresponding to

the expresion:

|ψ′2〉 = (|ψ1〉〈ψ1|list ⊗ 1Irest) |ψ2〉

Note that if for example list=[1,2,3] it means that we want to measure modes one, two an

three. The vec object that corresponds to |ψ1〉 must therefore have kets with 3 modes.

For example, if |ψ2〉 is

V 2 :=


1 |0000 >

x |1100 >

x2 |2200 >


and |ψ1〉 is

V 1 :=
[

1 |10 >
]

Then,

S := Project(V1, [2,3], V2);

will return:

S =
[
x |1100 >

]
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2. if given (matcol 1, list, vec 2) and say matcol 1 and vec 2 describe Mn and |ψ2〉 then it

will return the matcol object:

ρ = (Mnlist ⊗ 1Irest) |ψ2〉〈ψ2| (Mnlist ⊗ 1Irest)
†

So for example, taking the same V2 as above and the POVM:

M :=


1 [0, 0] [1, 1]

1 [1, 1] [0, 0]

1 [1, 1] [1, 1]


Then,

S := Project(M, [1,2], V2);

will return the state:

S =



xx̄ [0, 0, 0, 0] [0, 0, 0, 0]

x+ xx̄ [0, 0, 0, 0] [1, 1, 0, 0]

xx̄+ x̄ [1, 1, 0, 0] [0, 0, 0, 0]

x+ xx̄+ x̄+ 1 [1, 1, 0, 0] [1, 1, 0, 0]


which is the mixed state that corresponds to:

S =

 x [0, 0, 0, 0]

x+ 1 [1, 1, 0, 0]



3. if given (vec 1, list, matcol 2) and say vec 1, matcol 2 describe |ψ1〉 and ρ respectively,

210



.1 Dictionary of Procedures:

then it will build |ψ1〉〈ψ1| and return the matcol object corresponding to:

ρ′ = (|ψ1〉〈ψ1|list ⊗ 1Irest) ρ (|ψ1〉〈ψ1|list ⊗ 1Irest)

4. if given (matcol 1, list, matcol 2) and say matcol 1 and matcol 2 describe Mn and ρ

respectively, then it will return:

ρ′ = (Mnlist ⊗ 1Irest) ρ (Mnlist ⊗ 1Irest)
+

In a nutshell:

Project(|ψ1〉, list, |ψ2〉) → (|ψ1〉〈ψ1|list ⊗ 1Irest) |ψ2〉

Project(Mn, list, |ψ2〉) → (Mnlist ⊗ 1Irest) |ψ2〉〈ψ2| (Mnlist ⊗ 1Irest)
†

Project(|ψ1〉, list, ρ ) → (|ψ1〉〈ψ1|list ⊗ 1Irest) ρ (|ψ1〉〈ψ1|list ⊗ 1Irest)

Project(Mn, list, ρ ) → (Mnlist ⊗ 1Irest) ρ (Mnlist ⊗ 1Irest)
+

[ Input: (Matrix, list Matrix), Output: Matrix, Calls: Quantavo, StateComplexConjugate, Lin-

earAlgebra, vec2matcol]

PS(vec/matcol, j, φ): PHASE SHIFTER: This procedure makes a phase shifter trans-

formation to our state. It is implemented making the following mode transformation to the

specified mode j:

a′j = eiφaj (10)

b′j = e−iφbj (11)

(that is transformation (10) for a vec and transformation (10) and (11) for matcol and mat.)

[ Input: (Matrix, whole number, symbol or number), Output: Matrix, Calls: Quantavo, Linear-

Algebra]
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S

SqueezedVac(m,d,λ): This procedure builds a vec describing the state |φ〉 ∼
∑d−1

n=0 λ
n|n〉⊗m

where m can be m = 1, 2. The state is not normalized.

[ Input: (whole number, whole number, string or number), Output: 2 column Matrix, Calls:

Quantavo, LinearAlgebra]

StateApprox(vec/matcol, list, n): This procedure is used to reduce the size and

complexity of the vec or matcol objects with an approximation.

Numerical Approximation: If the coefficients of our state are numbers then use as follows:

StateApprox(vec/matcol, [], n). All Rows for which the coefficient < 10−n will be deleted.

Symbolic Approximation: If the coefficients are symbolic polynomials (or monomials) and

some variables are small, we may choose to delete all terms with a certain power in those vari-

ables. If we execute S := StateApprox(M,[lambda,r],10), then all terms containing λnrm such

that n+m > 10 will be deleted. For example if we have a state of the form:

M :=


1 + y4x2 + yx4 [0, 0, 0, 0]

y7x+ x3 + x5 [1, 1, 0, 0]

x2 + x4 + x6 + y5 [2, 2, 0, 0]


then,

S := StateApprox(M,[y,x],5);

will return the state: 
1 + yx4 [0, 0, 0, 0]

x3 + x5 [1, 1, 0, 0]

x2 + x4 + y5 [2, 2, 0, 0]


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and

S := StateApprox(M,[y,x],1);

will return the state: [
1 [0, 0, 0, 0]

]

[ Input: (Matrix, list, integer), Output: Matrix, Calls: Quantavo, LinearAlgebra]

StateComplexConjugate(matcol/mat): It will complex conjugate all the

coefficients of an object of type mat or matcol.

[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra]

StateMultiply(number/matcol, matcol/vec): This procedure multiplies

following the matrix multiplication rules the following objects:

k × matcol,

k × vec,

matcol × matcol

matcol × vec

where k is a number, a variable, a function or a string

[ Input: (string/Matrix, Matrix), Output: Matrix, Calls: Quantavo, LinearAlgebra]

StateSort(vec/matcol): This procedure sorts by rows the objects vec or matcol.

The order is determined in the following way. The modes are converted from the numeral base

d to the numeral base 10 and are then sorted by increasing order. For matcol they are sorted
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first according to the order of the “kets” and inside the same “ket” number, by the order of the

“bras”. For example, with d = 2 and K = 2, [λ, [0, 0]] < [λ2, [1, 0]] < [λ, [0, 1]] < [λ3, [1, 1]].

The output is the ordered state.

[ Input: Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra, Tribullesmatcol, Tribullesvec]

StateTrace(mat/matcol): This procedure performs the trace on mat or matcol

states. It simply adds all diagonal elements.

[ Input: Matrix, Output: Real Number or symbolic expression, Calls: Quantavo, LinearAlge-

bra]

StateNorm(vec): It evaluates the norm 〈φ|φ〉 of the state associated with the object

vec

[ Input: Matrix, Output: number or expression, Calls: Quantavo, LinearAlgebra]

StateNormalize(vec/matcol/mat): This procedure returns a normalized state

such that 〈ψ|ψ〉 = 1 for vec and Tr(ρ)=1 for matcol or mat. If the state was not normalized to

begin with it will print: “the state is not normalized” and then return the normalized state.

[ Input: Matrix, Output: Matrix and printed answer, Calls: Quantavo, LinearAlgebra, IsNor-

malized, LittleTrace]

StatePartialTranspose(vec/matcol/mat,s): This procedure works only

for bipartite states (two modes only). If your state is not bipartite use Traceout to trace out the

other modes. The parameter ‘s’ specifies if the partial transposition must be made with respect

to the first or to the second mode. The output is the partially transposed matcol or mat.

[ Input: (Matrix, 1 or 2), Output: Matrix, Calls: Quantavo, LinearAlgebra]

T

TensorProduct(vec/matcol, List, vec/matcol, List): This will return

the tensor product between modes [ListA] of state A and modes [ListB] of state B. It therefore

implements the operation, (ρ,listA,σ, listB)−→ ρlistA⊗σlistB . Note that the dimension of each
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state and its corresponding list must be equal. So for example we can declare two states,

Sq:=SqueezedVac(2, 3, ξ);

Fock2:=Matrix([[γ, [1,1]], [gamma, [2,2]]]);


1 [0, 0]

ξ [1, 1]

ξ2 [2, 2]


 γ [1, 1]

γ [2, 2]



and after using

TensorProduct(Sq,[1,4],Fock2,[2,3]);

we obtained the tensored vec object,



γ [0, 1, 1, 0]

γ [0, 2, 2, 0]

ξ γ [1, 1, 1, 1]

ξ γ [1, 2, 2, 1]

ξ2γ [2, 1, 1, 2]

ξ2γ [2, 2, 2, 2]



[ Input: Matrix,List,Matrix,List, Output: Matrix, Calls: Quantavo, LinearAlgebra]

TensorVac(vec/matcol/mat, m): This procedure tensors ‘m’ vacuum modes with

an existing state. The new modes are in a product state with the original state. If it is a vec object

it will therefore do the transformation |ψ〉 −→ |ψ〉 ⊗ |0〉⊗m and ρ −→ ρ⊗ (|0〉〈0|)⊗m for mat

and matcol. The procedure will also transform the global variable K→ K + m.

[ Input: (Matrix, whole number), Output: Matrix, Calls: Quantavo, LinearAlgebra]
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Traceout(matcol,i): This procedure takes the partial trace of a sparse density ma-

trix with respect to mode i. Its input is an object of type matcol

[ Input: (Matrix, whole number), Output: Matrix, Calls: Quantavo, LinearAlgebra]

Trim(Vector/vec/matcol): This procedure eliminates all the non zero entries of a vec-

tor of dimension dK and converts it into an object of type vec. It also deletes all non-zero entries

in objects of type vec and matcol

[ Input: Vector/Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra]

U

UnitaryEvolution(Unitary Matrix, vec/matcol): Whether we have just

built a unitary matrix with BuildUnitary or we have an arbitrary unitary matrix, we can use

this procedure as follows:

V:= UnitaryEvolution(U, vec/matcol):

where U is the unitary matrix of dimension K × K and our state is described by a vec or a

matcol object. This will effectively implement the mode transformation:

a′ = Ua

and return the vec or matcol after the transformation. (Note that for matcol it also does b
′ = U †b

)

[ Input: (Matrix, Matrix), Output: Matrix, Calls: Quantavo, LinearAlgebra]

V

Vac(Nr. of modes): This procedure returns a vacuum vec with the number of speci-

fied modes. For example Vac(3) will return
[

1 [0, 0, 0]
]
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[ Input: positive natural number, Output: Matrix, Calls: Quantavo, LinearAlgebra]

vec2mat(vec): It converts a vec object into a mat object. The procedures is indepen-

dent of d and K.

[ Input: 2 column Matrix, Output: Matrix, Calls: Quantavo, LinearAlgebra]

vec2matcol(vec): It converts a vec object into a matcol object effectively doing

∑
n̄

αn̄|n̄〉 −→
∑
n̄m̄

αn̄ᾱm̄|n̄〉〈m̄|

Note that no normalization is implemented. The procedure is independent of d and K.

[ Input: 2 column Matrix, Output: 3 Column Matrix, Calls: Quantavo, LinearAlgebra]

vec2poly(vec): It converts a vec object into a poly object

[ Input: 2 column Matrix, Output: Polynomial, Calls: LinearAlgebra, Quantavo]

VectorModes(i): this procedure takes as input an integer between 1 and dK and outputs

a list with the equivalent number of photons in each mode. This way, VectorModes(1) =

[0,0,0] if it is a 3 mode state and VectorModes(2)=[1,0,0] if K = 3 and d = 2 for example.

(Note that d and K need to be defined)

[ Input: integer, Output: List, Calls: Quantavo]

VectorRow(Indi, d): d (maximum number of photons) and K (number of modes)

need to be specified. This is the inverse procedure of VectorModes. When a list with the

number of photons in each mode (for instance Indi = [0,1,0]) and the value of d are given, it

outputs the row number that corresponds to it in a vector type object). This way, for d = 2,

K = 3 VectorRow([0,1,0],2)=3.

[ Input: (List,d), Output: whole number, Calls: Quantavo]

Quantavo also uses the local procedures:

multiplymatcol, multiplymatcolvec, Tribullesmatcol, Tribullesvec, VectorModes, VectorRow,
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indexvec, modesvec, vecBS, myvecBS, matcolBS, mymatcolBS, Projectvecvec, Projectmatcol,

Dvec, Dmat, Dmatcol, barra,histo;

.2 Copyright and Disclaimer

Copyright (c) 2008 Alvaro Feito Boirac.

This is the Module QUANTAVO, a toolbox for Quantum Optics calculations that can be used in

MapleTM (Waterloo Maple Inc.)

It is released under the GNU General Public License v3 which can be obtained at http:

//www.gnu.org/licenses/gpl.html . Please acknowledge its use if used to estab-

lish results for a published work. If you make any improvements or find any bugs the author will

be thankful if you can let him know.

DISCLAIMER: This Module is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.
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1 ##########################################################################

2 ##########################################################################

3

4 ############ Algeb ra O p e r a t i o n s ##############

5

6 ##########################################################################

7 ##########################################################################

8

9 ## t e n s o r p r o d u c t be tween two Maple m a t r i c e s ##

10 ### ( n o t s p e c i f i c a l l y used by Quantavo o b j e c t s ) ###

11 DP:= proc (A : : Matr ix , B : : Ma t r i x )

12 l o c a l M, P , i , j ;

13

14 M := Ma t r i x ( LinearAlgebra :−RowDimension (A)∗ LinearAlgebra :−RowDimension (B) ,

15 LinearAlgebra :−ColumnDimension (A)∗ LinearAlgebra :−ColumnDimension (B ) ) ;

16 P := M at r i x ( LinearAlgebra :−RowDimension (B) , LinearAlgebra :−ColumnDimension (B) ) ;

17

18 f o r i to LinearAlgebra :−RowDimension (A) do

19 f o r j to LinearAlgebra :−ColumnDimension (A) do

20

21 P := LinearAlgebra :− S c a l a r M u l t i p l y (

22 B , A[ i , j ] ) ;

23 M[1 + ( i − 1)∗ LinearAlgebra :−RowDimension (B) . .

24 ( i − 1)∗ LinearAlgebra :−RowDimension (B) + LinearAlgebra :−RowDimension (B) ,

25 1 + ( j − 1)∗ LinearAlgebra :−ColumnDimension (B) . .

26 ( j − 1)∗ LinearAlgebra :−ColumnDimension (B) + LinearAlgebra :−ColumnDimension (B ) ] := P ;

27 end do ;

28 end do ;

29 M;

30 end proc ;

31

32 ######### ########## ######### ######## ###########

33 ### t e n s o r p r o d u c t be tween modes [ l i s t A ] o f s t a t e A

34 ### and modes [ l i s t B ] o f s t a t e B

35

36 T e n s o r P r o d u c t := proc (A, l i s t A , B , l i s t B )

37 l o c a l i , j , t , dA , dB , Ket , Bra , AA, BB, C ;

38 ##

39 #### check i f d i m e n s i o n s a g r e e ####

40 i f nops ( l i s t A )= nops (A[ 1 , 2 ] ) and

41 nops ( l i s t B )= nops (B [ 1 , 2 ] ) then
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42

43 dA:= LinearAlgebra :−RowDimension (A ) :

44 dB := LinearAlgebra :−RowDimension (B ) :

45

46 ##### VEC−VEC c a s e ####

47 i f LinearAlgebra :−ColumnDimension (A)=2 and

48 LinearAlgebra :−ColumnDimension (B)=2 then

49 ### d e c l a r e t h e new m a t r i x wi th t h e a p p r o p r i a t e d i m e n s i o n s

50 C:= Ma t r i x ( dA∗dB , 2 ) :

51

52 f o r i from 1 to dA do

53 f o r j from 1 to dB do

54

55 ##### b u i l d new k e t #####

56 Ket : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;

57

58 f o r t from 1 to nops ( l i s t A ) do

59 Ket := subsop ( l i s t A [ t ]=A[ i , 2 ] [ t ] , Ket ) ;

60 od :

61

62 f o r t from 1 to nops ( l i s t B ) do

63 Ket := subsop ( l i s t B [ t ]=B[ j , 2 ] [ t ] , Ket ) ;

64 od :

65 ##### b u i l d new k e t ( end ) #####

66 ## p r o d u c t o f m a t r i x e l e m e n t s ##

67 C[ dB∗ ( i −1)+ j , 1 ] : =A[ i , 1 ]∗B[ j , 1 ] :

68 C[ dB∗ ( i −1)+ j , 2 ] : = Ket :

69

70 od :

71 od :

72 p r i n t ( ” k and d a r e now ” , f indKnd (C ) ) ;

73 re turn C ;

74

75 ##### matcol−ma tc o l c a s e ####

76 e l i f LinearAlgebra :−ColumnDimension (A)=3 and

77 LinearAlgebra :−ColumnDimension (B) = 3 then

78

79 C:= Ma t r i x ( dA∗dB , 3 ) :

80

81 f o r i from 1 to dA do

82 f o r j from 1 to dB do

83

84 ##### b u i l d new k e t and b r a #####

85 Ket : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;

86 Bra : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;
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87

88 f o r t from 1 to nops ( l i s t A ) do

89 Ket := subsop ( l i s t A [ t ]=A[ i , 2 ] [ t ] , Ket ) ;

90 Bra := subsop ( l i s t A [ t ]=A[ i , 3 ] [ t ] , Bra ) ;

91 od :

92

93 f o r t from 1 to nops ( l i s t B ) do

94 Ket := subsop ( l i s t B [ t ]=B[ j , 2 ] [ t ] , Ket ) ;

95 Bra := subsop ( l i s t B [ t ]=B[ j , 3 ] [ t ] , Bra ) ;

96 od :

97 ##### b u i l d new k e t and b r a ( end ) #####

98

99 C[ dB∗ ( i −1)+ j , 1 ] : =A[ i , 1 ]∗B[ j , 1 ] :

100 C[ dB∗ ( i −1)+ j , 2 ] : = Ket :

101 C[ dB∗ ( i −1)+ j , 3 ] : = Bra :

102 od :

103 od :

104 p r i n t ( ”K and d a r e now ” , f indKnd (C ) ) ;

105 re turn C ;

106

107 ##### MATCOL−VEC c a s e ####

108 e l i f LinearAlgebra :−ColumnDimension (A)=3 and

109 LinearAlgebra :−ColumnDimension (B)=2 then

110 BB:= v e c 2 m a t c o l (B ) :

111

112 dB := LinearAlgebra :−RowDimension (BB ) :

113 C:= Ma t r i x ( dA∗dB , 3 ) :

114

115 f o r i from 1 to dA do

116 f o r j from 1 to dB do

117

118 ##### b u i l d new k e t and b r a #####

119 Ket : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;

120 Bra : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;

121

122 f o r t from 1 to nops ( l i s t A ) do

123 Ket := subsop ( l i s t A [ t ]=A[ i , 2 ] [ t ] , Ket ) ;

124 Bra := subsop ( l i s t A [ t ]=A[ i , 3 ] [ t ] , Bra ) ;

125 od :

126

127 f o r t from 1 to nops ( l i s t B ) do

128 Ket := subsop ( l i s t B [ t ]=BB[ j , 2 ] [ t ] , Ket ) ;

129 Bra := subsop ( l i s t B [ t ]=BB[ j , 3 ] [ t ] , Bra ) ;

130 od :

131 ##### b u i l d new k e t and b r a ( end ) #####
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132 C[ dB∗ ( i −1)+ j , 1 ] : =A[ i , 1 ]∗BB[ j , 1 ] :

133 C[ dB∗ ( i −1)+ j , 2 ] : = Ket :

134 C[ dB∗ ( i −1)+ j , 3 ] : = Bra :

135 od :

136 od :

137 p r i n t ( ”K and d a r e now ” , f indKnd (C ) ) ;

138 re turn C ;

139 ##### VEC−MATCOL c a s e ####

140 e l i f LinearAlgebra :−ColumnDimension (A)=2 and

141 LinearAlgebra :−ColumnDimension (B)=3 then

142 AA:= v e c 2 m a t c o l (A ) :

143

144 C:= Ma t r i x ( dA∗dB , 3 ) :

145

146 f o r i from 1 to dA do

147 f o r j from 1 to dB do

148

149 ##### b u i l d new k e t and b r a #####

150 Ket : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;

151 Bra : = [ seq ( 0 , s = 1 . . nops ( l i s t A )+ nops ( l i s t B ) ) ] ;

152

153 f o r t from 1 to nops ( l i s t A ) do

154 Ket := subsop ( l i s t A [ t ]=AA[ i , 2 ] [ t ] , Ket ) ;

155 Bra := subsop ( l i s t A [ t ]=AA[ i , 3 ] [ t ] , Bra ) ;

156 od :

157

158 f o r t from 1 to nops ( l i s t B ) do

159 Ket := subsop ( l i s t B [ t ]=B[ j , 2 ] [ t ] , Ket ) ;

160 Bra := subsop ( l i s t B [ t ]=B[ j , 3 ] [ t ] , Bra ) ;

161 od :

162 ##### b u i l d new k e t and b r a ( end ) #####

163 C[ dB∗ ( i −1)+ j , 1 ] : =AA[ i , 1 ]∗B[ j , 1 ] :

164 C[ dB∗ ( i −1)+ j , 2 ] : = Ket :

165 C[ dB∗ ( i −1)+ j , 3 ] : = Bra :

166 od :

167 od :

168 p r i n t ( ”K and d a r e now ” , f indKnd (C ) ) ;

169 re turn C ;

170

171 #### o t h e r w i s e ####

172 e l s e

173 p r i n t ( ” a r e your s t a t e s VEC or MATCOL o b j e c t s ? a r e t h e y w e l l d e f i n e d ? ” ) :

174 f i :

175

176 e l s e
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177 p r i n t ( ” t h e number o f modes i n t h e s t a t e and t h e l i s t don ’ t c o i n c i d e ” ) ;

178 f i :

179

180 end proc :

181

182 ######### ########## ######### ######## ###########

183 ## k r o n e c k e r d e l t a #

184 DeltaK := proc ( j , k )

185 i f n o t t y p e ( j − k , numer ic )

186 then RETURN( ’ procname ( a r g s ) ’ )

187 end i f ;

188 i f j = k then 1 e l s e 0 end i f ;

189 end proc ;

190

191

192 ######### ########## ######### ######## ###########

193 S t a t e M u l t i p l y := proc (A, B)

194 l o c a l i , C ;

195 i f whattype (A) <> Ma t r ix and B[ 1 , 1 ] <> 0 and

196 LinearAlgebra :−ColumnDimension (B

197 ) = 3 then

198

199 C := Ma t r i x ( LinearAlgebra :−RowDimension (B) , 3 ) ;

200 f o r i to LinearAlgebra :−RowDimension (B) do C[ i , 1 ] := A∗B[ i , 1 ] ;

201 C[ i , 2 ] := B[ i , 2 ] ;

202 C[ i , 3 ] := B[ i , 3 ] ;

203 end do ;

204 re turn C ;

205 e l i f whattype (A) <> Ma t r ix and B[ 1 , 1 ] <> 0 and

206 LinearAlgebra :−ColumnDimension (B) = 2 then

207 C := Ma t r i x ( LinearAlgebra :−RowDimension (B) , 2 ) ;

208 f o r i to LinearAlgebra :−RowDimension (B) do C[ i , 1 ] := A∗B[ i , 1 ] ;

209 C[ i , 2 ] := B[ i , 2 ] ;

210 end do ;

211 re turn C ;

212 e l i f whattype (A) = Ma t r i x and A[ 1 , 1 ] <> 0 and B[ 1 , 1 ] <> 0 and

213 LinearAlgebra :−ColumnDimension (A) = 3 and

214 LinearAlgebra :−ColumnDimension (B) =

215 3 then

216 C := m u l t i p l y m a t c o l (A, B ) ;

217 re turn C ;

218 e l i f whattype (A) = Ma t r i x and A[ 1 , 1 ] <> 0 and B[ 1 , 1 ] <> 0 and

219 LinearAlgebra :−ColumnDimension (A) = 3 and

220 LinearAlgebra :−ColumnDimension (B) =

221 2 then
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222 C := m u l t i p l y m a t c o l v e c (A, B ) ;

223 re turn C ;

224 e l s e

225 p r i n t ( ” t h i s p r o c e d u r e m u l t i p l i e s

226 MATCOL x VEC or MATCOL x MATCOL Number x VEC or Number x MATCOL” ) ;

227 p r i n t ( ” a r e your s t a t e s w e l l d e f i n e d ? ” ) ;

228 end i f ;

229 end proc ;

230

231

232

233 ######### ########## ######### ######## ###########

234

235 m u l t i p l y m a t c o l v e c := proc (M, V)

236 l o c a l i , j , s , h a l t , TempoV , W;

237 W := M at r i x ( [ 0 , 0 ] ) ;

238 f o r i to LinearAlgebra :−RowDimension (M) do f o r j to

239 LinearAlgebra :−RowDimension (V) do i f M[ i , 3 ] = V[ j , 2 ] then

240 s := 1 ;

241 h a l t := 0 ;

242 whi le s <= LinearAlgebra :−RowDimension (W)

243 and h a l t = 0 do

244 i f M[ i , 2 ] = W[ s , 2 ] then

245 W[ s , 1 ] := W[ s , 1 ] + M[ i , 1]∗V[ j , 1 ] ;

246 h a l t := 1 ;

247 e l s e

248 s := s + 1

249 end i f ;

250 end do ;

251 i f h a l t = 0 then

252 TempoV := LinearAlgebra :−Transpose ( V ec to r ( [M[ i , 1]∗V[ j , 1 ] , [M[ i , 2 ] ]

253 ] ) ) ;

254 W := M at r i x ( [ [W] , [ TempoV ] ] ) ;

255 e l s e

256 end i f ;

257 e l s e

258 end i f ;

259 end do ;

260 end do ;

261 W := s i m p l i f y ( expand ( LinearAlgebra :−DeleteRow (W, 1 ) ) ) ;

262 re turn W;

263 end proc ;

264

265

266 ######### ########## ######### ######## ###########
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267 m u l t i p l y m a t c o l := proc (AA, BB)

268 l o c a l i , j , dimiA , dimiB , A, B , V, M, s , h a l t ;

269 dimiA := LinearAlgebra :−RowDimension (AA) ;

270 dimiB := LinearAlgebra :−RowDimension (BB ) ;

271 M := Ma t r i x ( [ 0 , 0 , 0 ] ) ;

272 A := i n d e x s t a t e (AA) ;

273 B := i n d e x s t a t e (BB ) ;

274 f o r i to dimiA do f o r j to dimiB do i f A[ i , 3 ] = B[ j , 2 ] then

275 s := 1 ;

276 h a l t := 0 ;

277 whi le s <= LinearAlgebra :−RowDimension (M) and h a l t = 0 do

278

279 i f M[ s , 2 ] = A[ i , 2 ] and M[ s , 3 ] = B[ j , 3 ] then

280 M[ s , 1 ] := M[ s , 1 ] + A[ i , 1]∗B[ j , 1 ] ;

281 h a l t := 1 ;

282 e l s e

283 s := s + 1

284 end i f ;

285 end do ;

286 i f h a l t = 0 then

287 V := LinearAlgebra :−Transpose ( V ec to r ( [A[ i , 1]∗B[ j , 1 ] , A[ i , 2 ] ,

288 B[ j , 3 ] ] ) ) ;

289 M := Ma t r i x ( [ [M] , [V ] ] ) ;

290 e l s e

291 end i f ;

292 e l s e

293 end i f ;

294 end do ;

295 end do ;

296 M := LinearAlgebra :−DeleteRow (M, 1 ) ;

297 re turn modesmatcol (M) ;

298 end proc ;

299

300

301 ######### ########## ######### ######## ###########

302 Sta teNorm := proc (V)

303 l o c a l i , Norma ;

304 i f V[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (V) = 2 then

305 Norma := s i m p l i f y ( s q r t ( add ( abs (V[ i , 1 ] ) ˆ 2 ,

306 i = 1 . . LinearAlgebra :−RowDimension (V ) ) ) ) ;

307 re turn Norma ;

308 e l s e

309 p r i n t ( ” Th i s p r o c e d u r e e v a l u a t e s t h e norm of a VEC o b j e c t ” ) ;

310

311 p r i n t ( ” i s your o b j e c t w e l l d e f i n e d ? ” ) ;
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312 end i f ;

313 end proc ;

314

315

316 ######### ########## ######### ######## ###########

317 ### t a k e t h e t r a c e o f a s t a t e ###

318 S t a t e T r a c e := proc (M: : Ma t r i x )

319 l o c a l i , Tr ;

320 i f M[ 1 , 1 ] = 0 then

321 Tr := s i m p l i f y ( add (M[ i , i ] , i = 2 . . LinearAlgebra :−RowDimension (M) ) ) ;

322 re turn Tr ;

323 e l s e

324 Tr := 0 ;

325 f o r i to LinearAlgebra :−RowDimension (M) do i f M[ i , 2 ] = M[ i , 3 ] then

326 Tr := Tr + M[ i , 1 ]

327 e l s e

328 end i f ;

329 end do ;

330 Tr := s i m p l i f y ( Tr ) ;

331 re turn Tr ;

332 end i f ;

333 end proc ;

334

335

336 ######### ########## ######### ######## ###########

337 ### t r a c e o u t a mode ##

338 T r a c e o u t := proc (Ma : : Matr ix , r )

339 l o c a l M, j , Out , i , L ;

340 g l o b a l K, d ;

341

342 i f LinearAlgebra :−ColumnDimension (Ma)=2 then

343 M:= v e c 2 m a t c o l (Ma ) :

344 e l i f LinearAlgebra :−ColumnDimension (Ma)=3 then

345 M := Ma t r i x (Ma ) ;

346 e l s e

347 p r i n t ( ” i s your s t a t e a w e l l d e f i n e d VEC or MATCOL o b j e c t ? ” )

348 f i :

349

350 ### keep t h e e l e m e n t s o f t h e d e n s i t y m a t r i x t h a t have

351 ### |012 x23><329x32 | same e l e m e n t x a t t h e p o s i t i o n ” r ” . ##

352

353 M:=M[ [ seq ( ‘ i f ‘ (M[ i , 2 ] [ r ]<>M[ i , 3 ] [ r ] ,NULL, i ) ,

354 i = 1 . . LinearAlgebra :−RowDimension (M) ) ] , [ 1 . . 3 ] ] ;

355

356 p r i n t ( ”K and d were ” , f indKnd (M) ) ;
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357 K:=K−1:

358 #### d e l e t e t h e e x t r a t e r m s i n t h e modes ###

359 M:= LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>VectorRow ( subsop ( r =NULL, x ) , d ) ,M) ;

360 M:= LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 3 ) ] ( x−>VectorRow ( subsop ( r =NULL, x ) , d ) ,M) ;

361

362

363 ##### s o r t ###

364 M:= T r i b u l l e s m a t c o l (M) :

365

366

367 #### Add t h e r e p e a t e d e l e m e n t s ####

368

369 L : = [ 1 , seq ( ‘ i f ‘ (M[ i−1,2]<>M[ i , 2 ] or M[ i−1,3]<>M[ i , 3 ] , i ,NULL) ,

370 i = 2 . . LinearAlgebra :−RowDimension (M) ) ] ;

371 Out :=M[ L , [ 1 . . 3 ] ] :

372

373

374 i f LinearAlgebra :−RowDimension ( Out)<>1 then

375 f o r j from 1 to LinearAlgebra :−RowDimension ( Out)−1 do

376 f o r i from L [ j ]+1 to L [ j +1]−1 do

377 Out [ j , 1 ] : = Out [ j , 1 ] +M[ i , 1 ] ;

378 od :

379 od :

380 ##### n o t to f o r g e t t h e l a s t e l e m e n t s ####

381 i f i< LinearAlgebra :−RowDimension (M) then

382 whi le i<LinearAlgebra :−RowDimension (M) do

383 i f M[ i , 2 ] =M[ i +1 ,2 ] and M[ i , 3 ] =M[ i +1 ,3 ] then

384 Out [ LinearAlgebra :−RowDimension ( Out ) , 1 ] : =

385 Out [ LinearAlgebra :−RowDimension ( Out ) , 1 ] +M[ i + 1 , 1 ] :

386 i := i +1 :

387 e l s e

388 f i :

389 od ;

390 e l s e

391 f i :

392 ##### i n c a s e i t ’ s on ly one e l e m e n t ####

393 e l i f LinearAlgebra :−RowDimension ( Out )=1 then

394 f o r i from 2 to LinearAlgebra :−RowDimension (M) do

395 Out [ 1 , 1 ] : = Out [ 1 , 1 ] +M[ i , 1 ] ;

396 od :

397 e l s e f i ;

398

399

400 ### back to modes ####

401 M:= LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>VectorModes ( x ) , Out ) ;
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402 M:= LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 3 ) ] ( x−>VectorModes ( x ) ,M) ;

403

404 p r i n t ( ”K and d a r e now ” , f indKnd (M) ) ;

405 re turn M;

406

407

408 end proc :

409

410

411 ######### ########## ######### ######## ###########

412 S t a t e N o r m a l i z e := proc (M)

413 l o c a l i , j , Tra , Nor , Kout ;

414 i f I s N o r m a l i z e d (M) = 1 then

415 re turn M

416 e l s e

417 i f M[ 1 , 1 ] = 0 then

418 Tra := S t a t e T r a c e (M) ;

419 f o r i from 2 to LinearAlgebra :−RowDimension (M) do f o r j from 2 to

420 LinearAlgebra :−RowDimension (M) do M[ i , j ] := (M[ i , j ] ) / ( Tra )

421 end do ;

422 end do ;

423 re turn M;

424 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) <= 2 then

425

426 Nor := s q r t ( add (M[ i , 1 ] ˆ 2 , i = 1 . . LinearAlgebra :−RowDimension (M) ) ) ;

427

428 Kout := Mat r i x (M) :

429 Kout := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 1 ) ] ( x−>x / Nor , Kout ) :

430 re turn Kout ;

431

432 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

433 Tra := S t a t e T r a c e (M) ;

434 Kout := Mat r i x (M) :

435 Kout := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 1 ) ] ( x−>x / Tra , Kout ) :

436 re turn Kout ;

437 e l s e

438 p r i n t ( ” i s your s t a t e w e l l d e f i n e d ? ” )

439 end i f ;

440 end i f ;

441 end proc :

442

443

444

445 ######### ########## ######### ######## ###########

446 S t a t e C o m p l e x C o n j u g a t e := proc (M)
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447 l o c a l i , j , dimi , dimj , V, K;

448 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

449 dimi := LinearAlgebra :−RowDimension (M) ;

450 K := M at r i x ( [ 0 , 0 , 0 ] ) ;

451 f o r i to dimi do

452 i f M[ i , 2 ] = M[ i , 3 ] then

453 V := LinearAlgebra :−Transpose ( V ec to r ( [ conjugate (M[ i , 1 ] ) , [M[ i , 2 ] ] ,

454 [M[ i , 3 ] ] ] ) ) ;

455 K := M at r i x ( [ [ K] , [V ] ] ) ;

456 e l s e

457 V := LinearAlgebra :−Transpose ( V ec to r ( [ conjugate (M[ i , 1 ] ) , [M[ i , 3 ] ] ,

458 [M[ i , 2 ] ] ] ) ) ;

459 K := M at r i x ( [ [ K] , [V ] ] ) ;

460 end i f ;

461 end do ;

462 K := LinearAlgebra :−DeleteRow (K, 1 ) ;

463 re turn K;

464 e l i f M[ 1 , 1 ] = 0 then

465 dimi := LinearAlgebra :−RowDimension (M) ;

466 dimj := LinearAlgebra :−ColumnDimension (M) ;

467 K := M at r i x ( dimi , d imj ) ;

468 f o r i to dimi do

469 f o r j to dimj do

470 i f i = j then

471 K[ i , j ] := conjugate (M[ i , j ] )

472 e l i f i <> j and ( i = 1 or j = 1 ) then

473 K[ i , j ] := M[ i , j ]

474 e l i f i <> j and 1 < i and 1 < j then

475 K[ i , j ] := conjugate (M[ j , i ] )

476 e l s e

477 end i f ;

478 end do ;

479 end do ;

480 re turn K;

481 e l s e

482 p r i n t ( ” i s your o b j e c t MAT or MATCOL w e l l d e f i n e d ? ” )

483 end i f ;

484 end proc ;

485

486 ######### ########## ######### ######## ###########

487 S t a t e P a r t i a l T r a n s p o s e := proc (M, s )

488 l o c a l i , Matc , Kout ;

489

490 #### choose vec / mat / ma t co l conver t 2 m a t co l ###

491 i f LinearAlgebra :−ColumnDimension (M)=2 and M[1 ,1]<>0 then
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492 Matc := v e c 2 m a t c o l (M) :

493 e l i f M[ 1 , 1 ] = 0 then

494 Matc := mat2matco l (M) :

495 e l s e

496 Matc := M at r i x (M) :

497 f i :

498

499 i f nops ( Matc [ 1 , 2 ] ) = 2 and s = 1 then

500 Kout := M at r i x ( LinearAlgebra :−RowDimension ( Matc ) , 3 ) ;

501 f o r i to LinearAlgebra :−RowDimension ( Matc ) do

502 Kout [ i , 1 ] := Matc [ i , 1 ] ;

503 Kout [ i , 2 ] := [ Matc [ i , 3 ] [ 1 ] , Matc [ i , 2 ] [ 2 ] ] ;

504 Kout [ i , 3 ] := [ Matc [ i , 2 ] [ 1 ] , Matc [ i , 3 ] [ 2 ] ] ;

505 end do ;

506 i f M[ 1 , 1 ] = 0 then

507 re turn matco l2mat ( Kout ) ;

508 e l s e

509 re turn Kout ;

510 f i :

511 e l i f nops ( Matc [ 1 , 2 ] ) = 2 and s = 2 then

512 Kout := M at r i x ( LinearAlgebra :−RowDimension ( Matc ) , 3 ) ;

513 f o r i to LinearAlgebra :−RowDimension ( Matc ) do

514 Kout [ i , 1 ] := Matc [ i , 1 ] ;

515 Kout [ i , 2 ] := [ Matc [ i , 2 ] [ 1 ] , Matc [ i , 3 ] [ 2 ] ] ;

516 Kout [ i , 3 ] := [ Matc [ i , 3 ] [ 1 ] , Matc [ i , 2 ] [ 2 ] ] ;

517 end do ;

518

519 i f M[ 1 , 1 ] = 0 then

520 re turn matco l2mat ( Kout ) ;

521 e l s e

522 re turn Kout ;

523 f i :

524

525 e l s e

526 p r i n t ( ” P a r t i a l Transpose on ly works f o r two mode s t a t e s . ” ) ;

527 p r i n t ( ” Trace Out t h e o t h e r s t a t e s or make s u r e i t i s a VEC, MAT or MATCOL” ) ;

528 end i f ;

529 end proc :

530

531

532 ##########################################################################

533 ##########################################################################

534

535 ############ S t a t e P r o p e r t i e s ##############

536
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537 ##########################################################################

538 ##########################################################################

539

540

541

542 L o g N e g a t i v i t y := proc (M)

543 l o c a l LogNeg ;

544 LogNeg := l o g [ 2 ] ( 2∗ N e g a t i v i t y (M) + 1 ) ;

545 re turn LogNeg ;

546 end proc ;

547

548

549

550 ######### ########## ######### ######## ###########

551 N e g a t i v i t y := proc (M)

552 l o c a l i , j , M1, M0, Kout , Eig , Neg ;

553

554 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

555 M0 := S t a t e P a r t i a l T r a n s p o s e (M, 1 ) ;

556

557 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

558 M0:= S t a t e P a r t i a l T r a n s p o s e ( v e c 2 m a t c o l (M) , 1 )

559

560 e l i f M[ 1 , 1 ] = 0 then

561

562 M0 := mat2matco l (M) ;

563 M0 := S t a t e P a r t i a l T r a n s p o s e (M0, 1 ) ;

564

565 e l s e

566

567 p r i n t ( ” i s your s t a t e a w e l l d e f i n e d MAT or MATCOL o b j e c t ? ” )

568 end i f ;

569

570 f indKnd (M0 ) :

571 M1 := matco l2mat (M0 ) ;

572 Kout := M at r i x ( LinearAlgebra :−RowDimension (M1) − 1 ,

573 LinearAlgebra :−ColumnDimension (M1) − 1 ) ;

574

575 f o r i from 2 to LinearAlgebra :−ColumnDimension (M1) do f o r j from 2 to

576 LinearAlgebra :−RowDimension (M1) do Kout [ i − 1 , j − 1] := M1[ i , j ]

577

578 end do ;

579 end do ;

580

581 Eig := s i m p l i f y ( LinearAlgebra :−E i g e n v a l u e s ( Kout ) ) ;
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582

583

584 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

585 Neg := add ( 1 / 2∗ abs ( Eig [ i ] ) − 1 /2∗ Eig [ i ] ,

586 i = 1 . . LinearAlgebra :−Dimension ( Eig ) ) / S t a t e T r a c e ( v e c 2 m a t c o l (M) ) ;

587 e l s e

588 Neg := add ( 1 / 2∗ abs ( Eig [ i ] ) − 1 /2∗ Eig [ i ] ,

589 i = 1 . . LinearAlgebra :−Dimension ( Eig ) ) / S t a t e T r a c e (M) ;

590 f i :

591

592 re turn Neg ;

593

594

595 end proc ;

596

597

598

599 ######### ########## ######### ######## ###########

600 Ent ropy := proc ( S t a t e ) l o c a l Entro , s , Matt , Matt1 , Eign ;

601

602

603 i f S t a t e [1 ,1]<>0 and

604 LinearAlgebra :−ColumnDimension ( S t a t e )=2 and

605 nops ( S t a t e [ 1 , 2 ] ) = 1 then

606 Matt := vec2mat ( S t a t e ) :

607 e l i f S t a t e [1 ,1]<>0 and

608 LinearAlgebra :−ColumnDimension ( S t a t e )=3 and

609 nops ( S t a t e [ 1 , 2 ] ) = 1 then

610 Matt := matco l2mat ( S t a t e ) ;

611 e l i f S t a t e [ 1 , 1 ] = 0 and nops ( S t a t e [ 1 , 2 ] ) = 1 then

612 Matt := M at r i x ( S t a t e ) ;

613 e l s e

614 p r i n t ( ” i s your s t a t e ( vec , mat or ma tc o l ) w e l l d e f i n e d ? ” ) ;

615 p r i n t ( ” t h i s p r o c e d u r e on ly works a f t e r t r a c i n g o u t .

616 Your s t a t e must have one mode on ly ” ) ;

617 f i :

618

619 Matt1 := LinearAlgebra :−DeleteColumn ( LinearAlgebra :−DeleteRow ( Matt , 1 ) , 1 ) :

620 Eign := LinearAlgebra :−E i g e n v a l u e s ( Matt1 ) / S t a t e T r a c e ( Matt ) :

621 E n t r o := s i m p l i f y (−add ( Eign [ s ]∗ l o g [ 2 ] ( Eign [ s ] ) ,

622 s = 1 . . LinearAlgebra :−Dimension ( Eign ) ) ) ;

623 re turn E n t r o ;

624 end proc :

625

626
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627

628 ######### ########## ######### ######## ###########

629 Energy := proc (M)

630 l o c a l Nor , Ene , i , s ;

631 g l o b a l hbar , nu ;

632

633 Nor := I s N o r m a l i z e d (M) :

634 i f Nor=1 then

635 e l s e

636 p r i n t ( ” i f your s t a t e i s n o t no rma l i ze d , so i s your Energy ” ) ;

637 f i :

638 hba r := ‘& hba r ; ‘ ;

639

640

641 i f M[1 ,1]<>0 and LinearAlgebra :−ColumnDimension (M)=2 then

642

643 Ene := hba r∗nu∗ s i m p l i f y

644 ( add (M[ i , 1 ]∗ conjugate (M[ i , 1 ] ) ∗ ( add (M[ i , 2 ] [ s ] , s = 1 . . nops (M[ i , 2 ] ) ) +

645 nops (M[ i , 2 ] ) / 2 ) , i = 1 . . LinearAlgebra :−RowDimension (M) ) ) ;

646

647 e l i f M[1 ,1]<>0 and LinearAlgebra :−ColumnDimension (M)=3 then

648

649 Ene := hba r∗nu∗ s i m p l i f y ( add (

650 ‘ i f ‘ (M[ i , 2 ] =M[ i , 3 ] ,M[ i , 1 ] ∗ ( add (M[ i , 2 ] [ s ] , s = 1 . . nops (M[ i , 2 ] ) ) +

651 nops (M[ i , 2 ] ) / 2 ) , 0 ) , i = 1 . . LinearAlgebra :−RowDimension (M) ) ) ;

652 re turn Ene ;

653 e l s e

654 p r i n t ( ” i s your s t a t e a MAT or MATCOL o b j e c t ? ” ) :

655 f i :

656

657 end proc :

658

659

660 ######### ########## ######### ######## ###########

661 S t a t e S o r t := proc (Ma)

662 l o c a l i , j , Out , L ,M;

663 g l o b a l i n d ;

664 f indKnd (Ma ) :

665

666 i f Ma[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (Ma) = 3 then

667

668 M := i n d e x s t a t e (Ma ) ;

669 M := T r i b u l l e s m a t c o l (M) ;

670

671
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672

673 ####### Add t h e r e p e a t e d e l e m e n t s ####

674

675 L : = [ 1 , seq ( ‘ i f ‘ (M[ i−1,2]<>M[ i , 2 ] or M[ i−1,3]<>M[ i , 3 ] , i ,NULL) ,

676 i = 2 . . LinearAlgebra :−RowDimension (M) ) ] ;

677 Out :=M[ L , [ 1 . . 3 ] ] :

678

679

680 i f LinearAlgebra :−RowDimension ( Out)<>1 then

681 f o r j from 1 to LinearAlgebra :−RowDimension ( Out)−1 do

682 f o r i from L [ j ]+1 to L [ j +1]−1 do

683 Out [ j , 1 ] : = Out [ j , 1 ] +M[ i , 1 ] ;

684 od :

685 od :

686 ##### n o t to f o r g e t t h e l a s t e l e m e n t s ####

687 i f i< LinearAlgebra :−RowDimension (M) then

688 whi le i<LinearAlgebra :−RowDimension (M) do

689 i f M[ i , 2 ] =M[ i +1 ,2 ] and M[ i , 3 ] =M[ i +1 ,3 ] then

690 Out [ LinearAlgebra :−RowDimension ( Out ) , 1 ] : =

691 Out [ LinearAlgebra :−RowDimension ( Out ) , 1 ] +M[ i + 1 , 1 ] :

692 i := i +1 :

693 e l s e

694 f i :

695 od ;

696 e l s e

697 f i :

698 ##### i n c a s e i t ’ s on ly one e l e m e n t ####

699 e l i f LinearAlgebra :−RowDimension ( Out )=1 then

700 f o r i from 2 to LinearAlgebra :−RowDimension (M) do

701 Out [ 1 , 1 ] : = Out [ 1 , 1 ] +M[ i , 1 ] ;

702 od :

703 e l s e f i ;

704 ##### back from i n d e x to modes #####

705 Out := modesmatcol ( Out ) :

706 re turn Out ;

707

708

709 ###############################################################

710 e l i f Ma[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (Ma) = 2 then

711

712 M := i n d e x v e c (Ma ) ;

713 M := T r i b u l l e s v e c (M) ;

714

715

716 ####### Add t h e r e p e a t e d e l e m e n t s ####
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717

718 L : = [ 1 , seq ( ‘ i f ‘ (M[ ind−1,2]<>M[ ind , 2 ] , ind ,NULL) ,

719 i n d = 2 . . LinearAlgebra :−RowDimension (M) ) ] ;

720 Out :=M[ L , [ 1 . . 2 ] ] :

721

722

723 i f LinearAlgebra :−RowDimension ( Out)<>1 then

724 f o r j from 1 to LinearAlgebra :−RowDimension ( Out)−1 do

725 f o r i from L [ j ]+1 to L [ j +1]−1 do

726 Out [ j , 1 ] : = Out [ j , 1 ] +M[ i , 1 ] ;

727 od :

728 od :

729 ##### n o t to f o r g e t t h e l a s t e l e m e n t s ####

730 i f i< LinearAlgebra :−RowDimension (M) then

731 whi le i<LinearAlgebra :−RowDimension (M) do

732 i f M[ i , 2 ] =M[ i +1 ,2 ] then

733 Out [ LinearAlgebra :−RowDimension ( Out ) , 1 ] : =

734 Out [ LinearAlgebra :−RowDimension ( Out ) , 1 ] +M[ i + 1 , 1 ] :

735 i := i +1 :

736 e l s e

737 f i :

738 od ;

739 e l s e

740 f i :

741 ##### i n c a s e i t ’ s on ly one e l e m e n t ####

742 e l i f LinearAlgebra :−RowDimension ( Out )=1 then

743 f o r i from 2 to LinearAlgebra :−RowDimension (M) do

744 Out [ 1 , 1 ] : = Out [ 1 , 1 ] +M[ i , 1 ] ;

745 od :

746 e l s e f i ;

747 Out := modesvec ( Out ) :

748 re turn Out ;

749

750 e l s e

751 p r i n t ( ” i s your s t a t e a VEC or MATCOL? I s i t w e l l d e f i n e d ? ” )

752 end i f ;

753 end proc ;

754

755 ######### ########## ######### ######## ###########

756

757 S t a t e A p p r o x := proc (M: : Matr ix , L , n )

758 l o c a l Ma, l i l i , t o d e l e t e , i ;

759 Ma:= Ma t r i x (M) :

760 t o d e l e t e : = [ ] :

761
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762 i f nops ( L)=0 then

763

764 f o r i from 1 to LinearAlgebra :−RowDimension (Ma) do

765 i f e v a l f ( abs (Ma[ i , 1 ] ) ) < 10ˆ(−n ) then

766 t o d e l e t e : = [ op ( t o d e l e t e ) , i ] :

767 e l s e

768 f i :

769 od :

770

771 e l s e

772

773 f o r i from 1 to LinearAlgebra :−RowDimension (Ma) do

774

775 i f d e g r e e (Ma[ i , 1 ] , { op ( L)})>n and whattype (Ma[ i , 1 ] ) = ‘ + ‘ then

776 Ma[ i , 1 ] : = expand (Ma[ i , 1 ] ) :

777

778 l i l i := conver t ( expand (Ma[ i , 1 ] ) , l i s t ) :

779 l i l i :=map ( x−>‘ i f ‘ ( d e g r e e ( x ,{ op ( L)})>n , NULL, x ) , l i l i ) :

780

781 i f nops ( l i l i )=0 then

782 t o d e l e t e : = [ op ( t o d e l e t e ) , i ] :

783 e l s e

784 Ma[ i , 1 ] : = add ( l i l i [ j ] , j = 1 . . nops ( l i l i ) ) :

785 f i :

786

787 e l i f d e g r e e (Ma[ i , 1 ] , { op ( L)})>n and whattype (Ma[ i , 1 ] ) = ‘∗ ‘ then

788

789 t o d e l e t e : = [ op ( t o d e l e t e ) , i ] :

790 e l s e

791 f i :

792

793 od :

794 f i :

795

796 Ma:= LinearAlgebra :−DeleteRow (Ma, t o d e l e t e ) :

797 re turn Ma;

798

799 end proc :

800

801 ######### ########## ######### ######## ###########

802 E x p a n d S t a t e := proc (A)

803 l o c a l i , j , Out ;

804 Out :=A:

805 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 1 ) ] ( x−>expand ( x ) , Out ) :

806 re turn Out ;
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807 end proc :

808 ######### ########## ######### ######## ###########

809

810 E v a l S t a t e := proc (M) l o c a l O u t S t a t e ;

811

812 O u t S t a t e :=M:

813 O u t S t a t e := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 1 ) ] ( x−>e v a l f ( x ) , O u t S t a t e ) :

814 re turn O u t S t a t e ;

815 end proc :

816

817 ######### ########## ######### ######## ###########

818 I s H e r m i t i a n := proc (M)

819 l o c a l i , j , h a l t , M1, M2, M3, s ;

820 h a l t := 0 ;

821 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

822 M1 := S t a t e C o m p l e x C o n j u g a t e (M) ;

823 M1 := S t a t e S o r t (M1 ) ;

824 M2 := S t a t e S o r t (M) ;

825 f o r i to LinearAlgebra :−RowDimension (M) whi le h a l t = 0 do

826 i f M1[ i , 1 ] = M2

827 [ i , 1 ] and M1[ i , 2 ] = M2[ i , 2 ] and M1[ i , 3 ] = M2[ i , 3 ] then

828 e l s e

829 h a l t := 1

830 end i f ;

831 end do ;

832 i f h a l t = 0 then

833 p r i n t ( ” The d e n s i t y m a t r i x i s H e r m i t i a n ” ) ;

834 re turn h a l t ;

835 e l s e

836 p r i n t ( ” The d e n s i t y m a t r i x i s NOT H e r m i t i a n ” ) ;

837 re turn h a l t ;

838 end i f ;

839 e l i f M[ 1 , 1 ] = 0 then

840 M1 := LinearAlgebra :−DeleteRow (M, 1 ) ;

841 M1 := LinearAlgebra :−DeleteColumn (M1, 1 ) ;

842 M2 := LinearAlgebra :−H e r m i t i a n T r a n s p o s e (M1 ) ;

843 M3 := M1 − M2;

844 s := 0 ;

845 f o r i to LinearAlgebra :−RowDimension (M3) do f o r j to

846 LinearAlgebra :−ColumnDimension (M3) do i f M3[ i , j ] <> 0 then

847 s := s + 1

848 e l s e

849 end i f ;

850 end do ;

851 end do ;
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852 i f s = 0 then

853 p r i n t ( ” i t i s a H e r m i t i a n d e n s i t y m a t r i x ” ) ;

854 re turn h a l t ;

855 e l s e

856 p r i n t ( ” i t i s NOT a H e r m i t i a n d e n s i t y m a t r i x ” ) ;

857 h a l t := 1 ;

858 re turn h a l t ;

859 end i f ;

860 e l s e

861 p r i n t ( ” i s your MATCOL or MAT w e l l d e f i n e d ? ” )

862 end i f ;

863 end proc ;

864

865

866 ######### ########## ######### ######## ###########

867 I s N o r m a l i z e d := proc (M)

868 l o c a l i , Tra ;

869 i f LinearAlgebra :−ColumnDimension (M) = 2 and M[ 1 , 1 ] <> 0 then

870 Tra := s i m p l i f y ( s q r t ( add (M[ i , 1 ] ˆ 2 , i = 1 . . LinearAlgebra :−RowDimension (M)

871 ) ) ) ;

872 i f Tra = 1 then

873 p r i n t ( ” t h e s t a t e v e c t o r i s n o r m a l i z e d ” ) ;

874 re turn Tra ;

875 e l s e

876 p r i n t ( ” t h e norm of t h e s t a t e v e c t o r i s ” , Tra )

877 end i f ;

878 e l s e

879 Tra := S t a t e T r a c e (M) ;

880 i f Tra = 1 then

881 p r i n t ( ” t h e s t a t e i s n o r m a l i z e d ” ) ;

882 re turn Tra ;

883 e l s e

884 p r i n t ( ” t h e s t a t e i s NOT n o r m a l i z e d ” ) ;

885 p r i n t ( ” t h e t r a c e o f t h e s t a t e i s ” , Tra ) ;

886 end i f ;

887 end i f ;

888 end proc ;

889

890

891

892 ######### ########## ######### ######## ###########

893 f indKnd := proc (M: : Ma t r i x )

894 l o c a l i , dtemp ;

895 g l o b a l K, d ;

896 i f M[ 1 , 1 ] <> 0 then
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897 K := nops (M[ 1 , 2 ] ) ;

898 dtemp := 0 ;

899 i f LinearAlgebra :−ColumnDimension (M)=3 then

900 f o r i to LinearAlgebra :−RowDimension (M) do

901 i f dtemp < max ( op (M[ i , 2 ] ) , op (M[ i , 3 ] ) ) then

902 dtemp := max ( op (M[ i , 2 ] ) , op (M[ i , 3 ] ) )

903 e l s e

904 end i f ;

905 end do ;

906 d := dtemp + 1 ;

907 re turn K, d ;

908 e l i f LinearAlgebra :−ColumnDimension (M)=2 then

909 f o r i to LinearAlgebra :−RowDimension (M) do

910 i f dtemp < max ( op (M[ i , 2 ] ) ) then

911 dtemp := max ( op (M[ i , 2 ] ) )

912 e l s e

913 end i f ;

914 end do ;

915 d := dtemp + 1 ;

916 re turn K, d ;

917 f i :

918 e l i f M[ 1 , 1 ] = 0 then

919 K := nops (M[ 1 , 2 ] ) ;

920 dtemp := 0 ;

921 f o r i to LinearAlgebra :−RowDimension (M) do

922 i f dtemp < max ( op (M[ i , 1 ] ) ) then

923 dtemp := max ( op (M[ i , 1 ] ) )

924 e l s e

925 end i f ;

926 end do ;

927 d := dtemp + 1 ;

928 re turn K, d ;

929 e l s e

930 p r i n t ( ” i s your s t a t e VEC, MAT or MATCOLwell d e f i n e d ? ” )

931 end i f ;

932 end proc ;

933

934

935 ######### ########## ######### ######## ###########

936 T r i b u l l e s m a t c o l := proc ( L )

937 l o c a l i , j , tempa , tempi , tempo , T ;

938 T := L ;

939 f o r i to LinearAlgebra :−RowDimension ( L ) − 1 do f o r j to

940 LinearAlgebra :−RowDimension ( L ) − i do i f T [ j + 1 , 2 ] < T [ j , 2 ] then

941 tempa := T [ j , 1 ] ;
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942 t empi := T [ j , 2 ] ;

943 tempo := T [ j , 3 ] ;

944 T [ j , 1 ] := T [ j + 1 , 1 ] ;

945 T [ j , 2 ] := T [ j + 1 , 2 ] ;

946 T [ j , 3 ] := T [ j + 1 , 3 ] ;

947 T [ j + 1 , 1 ] := tempa ;

948 T [ j + 1 , 2 ] := tempi ;

949 T [ j + 1 , 3 ] := tempo ;

950 e l i f T [ j , 2 ] = T [ j + 1 , 2 ] and T [ j + 1 , 3 ] < T [ j , 3 ] then

951 tempa := T [ j , 1 ] ;

952 t empi := T [ j , 2 ] ;

953 tempo := T [ j , 3 ] ;

954 T [ j , 1 ] := T [ j + 1 , 1 ] ;

955 T [ j , 2 ] := T [ j + 1 , 2 ] ;

956 T [ j , 3 ] := T [ j + 1 , 3 ] ;

957 T [ j + 1 , 1 ] := tempa ;

958 T [ j + 1 , 2 ] := tempi ;

959 T [ j + 1 , 3 ] := tempo ;

960 e l s e

961 end i f ;

962 end do ;

963 end do ;

964 re turn T ;

965 end proc ;

966

967

968 ######### ########## ######### ######## ###########

969 T r i b u l l e s v e c := proc ( L )

970 l o c a l i , j , tempa , tempi , T ;

971 T := L ;

972 f o r i to LinearAlgebra :−RowDimension ( L ) − 1 do f o r j to

973 LinearAlgebra :−RowDimension ( L ) − i do i f T [ j + 1 , 2 ] < T [ j , 2 ] then

974 tempa := T [ j , 1 ] ;

975 t empi := T [ j , 2 ] ;

976 T [ j , 1 ] := T [ j + 1 , 1 ] ;

977 T [ j , 2 ] := T [ j + 1 , 2 ] ;

978 T [ j + 1 , 1 ] := tempa ;

979 T [ j + 1 , 2 ] := tempi ;

980 e l s e

981 end i f ;

982 end do ;

983 end do ;

984 re turn T ;

985 end proc ;

986
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987 ######### ########## ######### ######## ###########

988 VectorModes := proc ( i )

989 l o c a l Imat ;

990 g l o b a l K, d ;

991 Imat := conver t ( i − 1 , ‘ base ‘ , d ) ;

992 whi le nops ( Imat ) <> K do Imat := [ op ( Imat ) , 0 ] end do ;

993 re turn Imat ;

994 end proc ;

995

996

997 ######### ########## ######### ######## ###########

998 VectorRow := proc ( I n d i , f : : i n t e g e r )

999 l o c a l Imat , r u n i , Nimat , I n d i x , x ;

1000 g l o b a l K, d ;

1001 I n d i x := I n d i ;

1002 whi le nops ( I n d i x ) < K do I n d i x := [ op ( I n d i x ) , 0 ] end do ;

1003 Nimat := nops ( conver t ( I n d i x , base , f , 1 0 ) ) ;

1004 x := conver t ( I n d i x , base , f , 1 0 ) ;

1005 Imat := 1 + ( sum ( 1 0 ˆ ( r u n i − 1)∗ x [ r u n i ] , r u n i = 1 . . Nimat ) ) ;

1006 re turn Imat ;

1007 end proc ;

1008

1009

1010 ##########################################################################

1011 ##########################################################################

1012

1013 ############ D e c l a r a t i o n P r o c e d u r e s ##############

1014

1015 ##########################################################################

1016 ##########################################################################

1017

1018 SqueezedVac := proc (m, r , lambda )

1019 l o c a l V, i ;

1020 g l o b a l K, d ;

1021 K := m;

1022 d := r ;

1023 V := M at r i x ( r , 2 ) ;

1024 i f m = 1 then

1025 f o r i to r do

1026 V[ i , 1 ] := lambda ˆ ( i − 1 ) ;

1027 V[ i , 2 ] := [ i − 1 ] ; end do ;

1028 re turn V;

1029 e l i f m = 2 then

1030 f o r i to r do V[ i , 1 ] := lambda ˆ ( i − 1 ) ;

1031 V[ i , 2 ] := [ i − 1 , i − 1 ] ;

241



.3 Maple Code

1032 end do ;

1033 re turn V;

1034 e l s e

1035 p r i n t ( ” i s i t a s i n g l e mode or a 2 mode s q u e e z e d vacuum ? ” )

1036 end i f ;

1037 end proc ;

1038

1039

1040 ######### ########## ######### ######## ###########

1041

1042 Fock := proc ( i )

1043 l o c a l M;

1044 M:= Ma t r i x ( [ 1 , [ i ] ] ) ;

1045 re turn M;

1046 end proc :

1047

1048

1049 ######### ########## ######### ######## ###########

1050 C o h e r e n t S t a t e := proc (m, r , a l p h a )

1051 l o c a l V, i ;

1052

1053 g l o b a l K, d ;

1054 K := m;

1055

1056 d := r ;

1057 V := M at r i x ( d , 2 ) ;

1058

1059 i f m = 1 then

1060 f o r i to r do

1061 V[ i , 1 ] := ( a l p h a ˆ ( i − 1 ) ) / ( s q r t ( f a c t o r i a l ( i − 1 ) ) ) ;

1062 V[ i , 2 ] := [ i − 1 ] ; end do ;

1063

1064 re turn V;

1065 e l i f m = 2 then

1066

1067 f o r i to r do

1068 V[ i , 1 ] := ( a l p h a ˆ ( i − 1 ) ) / ( s q r t ( f a c t o r i a l ( i − 1 ) ) ) ;

1069 V[ i , 2 ] := [ i − 1 , i − 1 ] ; end do ;

1070 re turn V;

1071

1072 e l i f m = 3 then

1073 f o r i to r do

1074 V[ i , 1 ] := ( a l p h a ˆ ( i − 1 ) ) / ( s q r t ( f a c t o r i a l ( i − 1 ) ) ) ;

1075 V[ i , 2 ] := [ i − 1 , i − 1 , i − 1 ] ; end do ;

1076
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1077 re turn V;

1078 e l s e

1079

1080 p r i n t ( ” i s i t a s i n g l e mode or a 2 mode s q u e e z e d vacuum ? ” )

1081 end i f ;

1082

1083 end proc ;

1084

1085

1086 ######### ########## ######### ######## ###########

1087 I d e n t i t y S t a t e := proc ( Nrphot , NrModes )

1088 l o c a l Id1 , Id , i ;

1089

1090 Id := M at r i x ( Nrphot + 1 , 3 ) :

1091 f o r i from 1 to Nrphot +1 do

1092 Id [ i , 1 ] : = 1 :

1093 Id [ i , 2 ] : = [ i −1]:

1094 Id [ i , 3 ] : = [ i −1]:

1095 od :

1096

1097 i f NrModes=1 then

1098 re turn Id ;

1099 e l i f NrModes = 2 then

1100 Id := T e n s o r P r o d u c t ( Id , [ 1 ] , Id , [ 2 ] ) ;

1101 re turn Id ;

1102 e l i f NrModes = 3 then

1103 Id1 := T e n s o r P r o d u c t ( Id , [ 1 ] , Id , [ 2 ] ) ;

1104 Id := T e n s o r P r o d u c t ( Id1 , [ 1 , 2 ] , Id , [ 3 ] ) ;

1105 re turn Id ;

1106 e l i f NrModes>3 then

1107 p r i n t ( ” f o r more t h a n 3 modes , t e n s o r two i d e n t i t y s t a t e s ” )

1108 e l s e

1109 f i :

1110 end proc :

1111

1112

1113

1114 ######### ########## ######### ######## ###########

1115 Vac := proc ( Nmodes ) l o c a l L i s ;

1116 L i s : = [ seq ( 0 , i = 1 . . Nmodes ) ] ;

1117 re turn Ma t r ix ( [ 1 , L i s ] ) ;

1118 end proc :

1119

1120 ######### ########## ######### ######## ###########

1121 TensorVac := proc (M, m)
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1122 l o c a l i , s ;

1123 g l o b a l K, d ;

1124 K := f indKnd (M) [ 1 ] ;

1125 d := f indKnd (M) [ 2 ] ;

1126 K := K + m;

1127 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

1128 f o r i to LinearAlgebra :−RowDimension (M) do s := 1 ;

1129 whi le s <= m do

1130 M[ i , 2 ] := [ op (M[ i , 2 ] ) , 0 ] ; s := s + 1 ;

1131 end do ;

1132 end do ;

1133 re turn M;

1134 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

1135 f o r i to LinearAlgebra :−RowDimension (M) do s := 1 ;

1136 whi le s <= m do M[ i , 2 ] := [ op (M[ i , 2 ] ) , 0 ] ;

1137 M[ i , 3 ] := [ op (M[ i , 3 ] ) , 0 ] ;

1138 s := s + 1 ;

1139 end do ;

1140 end do ;

1141 re turn M;

1142 e l i f M[ 1 , 1 ] = 0 then

1143 f o r i from 2 to LinearAlgebra :−ColumnDimension (M) do s := 1 ;

1144 whi le s <= m do M[ 1 , i ] := [ op (M[ 1 , i ] ) , 0 ] ;

1145 M[ i , 1 ] := [ op (M[ i , 1 ] ) , 0 ] ;

1146 s := s + 1 ;

1147 end do ;

1148 end do ;

1149 re turn M;

1150 e l s e

1151 p r i n t ( ” i s your s t a t e VEC, MAT or MATCOL w e l l d e f i n e d ? ” )

1152 end i f ;

1153 end proc ;

1154

1155

1156 ##########################################################################

1157 ##########################################################################

1158

1159 ############ T r a n s l a t i o n P r o c e d u r e s ##############

1160

1161 ##########################################################################

1162 ##########################################################################

1163

1164

1165 Trim := proc (X)

1166 l o c a l s , i , Y, I n d i ;
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1167 g l o b a l d , K;

1168 i f t y p e (X, V ec to r ) = t r u e then

1169 s := 0 ;

1170

1171 # c o u n t t h e number o f

1172 #non−z e r o e n t r i e s

1173 f o r i to d ˆK do

1174 i f X[ i ] <> 0 then

1175 s := s + 1

1176 e l s e

1177 end i f ;

1178 end do ;

1179 ##

1180 Y := M at r i x ( s , 2 ) ;

1181 s := 1 ;

1182 f o r i to d ˆK do i f X[ i ] <> 0 then

1183 I n d i := VectorModes ( i ) ;

1184 Y[ s , 1 ] := X[ i ] ;

1185 Y[ s , 2 ] := I n d i ;

1186 s := s + 1 ;

1187 e l s e

1188 end i f ;

1189 end do ;

1190 Y;

1191 e l i f t y p e (X, Ma t r i x ) = t r u e and LinearAlgebra :−ColumnDimension (X) = 2 then

1192 Y:= M at r i x (X ) :

1193 Y:= Y[ [ seq ( ‘ i f ‘ (Y[ j , 1 ] = 0 ,NULL, j ) , j = 1 . . LinearAlgebra :−RowDimension (Y ) ) ] , 1 . . 2 ] :

1194 re turn Y;

1195

1196 e l i f t y p e (X, Ma t r i x ) = t r u e and LinearAlgebra :−ColumnDimension (X)=3 then

1197 Y:= M at r i x (X ) :

1198 Y:= Y[ [ seq ( ‘ i f ‘ (Y[ j , 1 ] = 0 ,NULL, j ) , j = 1 . . LinearAlgebra :−RowDimension (Y ) ) ] , 1 . . 3 ] :

1199 re turn Y;

1200 e l s e

1201 end i f ;

1202 end proc ;

1203

1204

1205

1206 ######### ########## ######### ######## ###########

1207 vec2mat := proc (V : : Ma t r i x )

1208 l o c a l M, i , j , d imi ;

1209 dimi := LinearAlgebra :−RowDimension (V ) ;

1210 M := Ma t r i x ( d imi + 1 , d imi + 1 ) ;

1211 f o r i from 2 to dimi + 1 do M[ i , 1 ] := V[ i − 1 , 2 ] end do ;
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1212 f o r i from 2 to dimi + 1 do M[ 1 , i ] := V[ i − 1 , 2 ] end do ;

1213 f o r i from 2 to dimi + 1 do f o r j from 2 to dimi + 1 do

1214 M[ i , j ] := V[ i − 1 , 1 ]∗ conjugate (V[ j − 1 , 1 ] )

1215 end do ;

1216 end do ;

1217 M;

1218 end proc ;

1219

1220

1221 ######### ########## ######### ######## ###########

1222 v e c 2 m a t c o l := proc (V : : Ma t r i x )

1223 l o c a l M, i , j ;

1224 M := [ ] ;

1225 f o r i to LinearAlgebra :−RowDimension (V) do

1226 f o r j to LinearAlgebra :−RowDimension (V) do

1227 M: = [ op (M) , [V[ i , 1 ]∗ conjugate (V[ j , 1 ] ) , V[ i , 2 ] , V[ j , 2 ] ] ] :

1228 end do ;

1229 end do ;

1230 conver t (M, Ma t r i x ) ;

1231 end proc ;

1232

1233

1234

1235 ######### ########## ######### ######## ###########

1236 v e c 2 p o l y := proc (V : : Ma t r i x )

1237 l o c a l i , s , Po ly ;

1238 g l o b a l K, a ;

1239

1240 i f whattype ( a [1])<> i n d e x e d then

1241 p r i n t ( ” u n a s i g n t h e mode v a r i a b l e s a [ 1 ] , a [ 2 ] , e t c b e f o r e r u n n i n g v e c 2 p o l y ” ) ;

1242 e l s e

1243

1244 f indKnd (V ) :

1245 Poly := 0 ;

1246 f o r i to LinearAlgebra :−RowDimension (V) do

1247 Poly := V[ i , 1 ]∗ ( p r o d u c t ( ( a [ s ] ˆV[ i , 2 ] [ s ] ) /

1248 ( s q r t ( f a c t o r i a l (V[ i , 2 ] [ s ] ) ) ) , s = 1 . . K) )

1249 + Poly ;

1250 end do ;

1251 Poly ;

1252 f i :

1253 end proc ;

1254

1255

1256 ######### ########## ######### ######## ###########
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1257 mat2matco l := proc (M)

1258 l o c a l i , j , s , K;

1259 K := M at r i x ( ( LinearAlgebra :−RowDimension (M) − 1 ) ˆ 2 , 3 ) ;

1260 s := 1 ;

1261 f o r i from 2 to LinearAlgebra :−ColumnDimension (M) do

1262 f o r j from 2 to LinearAlgebra :−RowDimension (M) do

1263 K[ s , 1 ] := M[ i , j ] ;

1264 K[ s , 2 ] := M[ i , 1 ] ;

1265 K[ s , 3 ] := M[ 1 , j ] ;

1266 s := s + 1 ;

1267 end do ;

1268 end do ;

1269 K := Trim (K ) ;

1270 end proc ;

1271

1272

1273 ######### ########## ######### ######## ###########

1274 mat2poly := proc (M: : Ma t r i x )

1275 l o c a l i , j , s , dimi , Po ly ;

1276 g l o b a l d ,K;

1277

1278 Poly := 0 ;

1279 dimi := LinearAlgebra :−RowDimension (M) ;

1280

1281 i f whattype ( a [1])<> i n d e x e d then

1282 p r i n t ( ” u n a s i g n mode v a r i a b l e s a [ 1 ] , a [ 2 ] , b [ 1 ] , b [ 2 ] , e t c b e f o r e r u n n i n g v e c 2 p o l y ” ) ;

1283 e l s e

1284

1285

1286 f o r i from 2 to dimi do

1287 f o r j from 2 to dimi do

1288 Poly := M[ i , j ]∗ ( p r o d u c t ( (

1289 a [ s ] ˆM[ i , 1 ] [ s ]∗ b [ s ] ˆM[ 1 , j ] [ s ] ) / ( s q r t ( f a c t o r i a l (M[ i , 1 ] [ s ] )∗ f a c t o r i a l (M

1290 [ 1 , j ] [ s ] ) ) ) , s = 1 . . K) ) + Poly ;

1291 end do ;

1292 end do ;

1293 Poly ;

1294 f i :

1295 end proc ;

1296

1297

1298

1299 ######### ########## ######### ######## ###########

1300 matco l2mat := proc (M1)

1301 l o c a l i , j , s , Lis tNoRol , h a l t , e f o f i , p l aced , M, Kout ;
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1302 f indKnd (M1 ) :

1303 M := S t a t e S o r t (M1 ) ;

1304 Lis tNoRol := [ [M[ 1 , 2 ] , 1 ] ] ;

1305 f o r i to LinearAlgebra :−RowDimension (M) − 1 do

1306 s := 1 ;

1307 h a l t := 0 ;

1308 whi le s <= nops ( L i s tNoRol ) and h a l t = 0 do

1309 i f M[ i + 1 , 2 ] = Lis tNoRol [ s , 1 ] then

1310 Lis tNoRol [ s , 2 ] := Lis tNoRol [ s , 2 ] + 1 ;

1311 h a l t := 1 ;

1312 e l s e

1313 s := s + 1

1314 end i f ;

1315 end do ;

1316 i f nops ( L i s tNoRol ) < s then

1317 Lis tNoRol := [ op ( L i s tNoRol ) , [M[ i + 1 , 2 ] , 1 ] ]

1318 e l s e

1319 end i f ;

1320 end do ;

1321 Kout := M at r i x ( nops ( L i s tNoRol ) + 1 , nops ( L i s tNoRol ) + 1 ) ;

1322 f o r i from 2 to nops ( L i s tNoRol ) + 1 do

1323 Kout [ 1 , i ] := Lis tNoRol [ i − 1 , 1 ] ;

1324 Kout [ i , 1 ] := Lis tNoRol [ i − 1 , 1 ] ;

1325 end do ;

1326 f o r i to nops ( L i s tNoRol ) do

1327 e f o f i := add ( Li s tNoRol [ t , 2 ] , t = 1 . . i − 1 ) ;

1328 p l a c e d := 1 ;

1329 j := 2 ;

1330 whi le p l a c e d <= Lis tNoRol [ i , 2 ] do

1331 i f M[ e f o f i + p l aced , 3 ] = Kout [ 1 , j ] then

1332 Kout [ i + 1 , j ] := M[ e f o f i + p laced , 1 ] ;

1333 p l a c e d := p l a c e d + 1 ;

1334 e l s e

1335 j := j + 1

1336 end i f ;

1337 end do ;

1338 end do ;

1339 re turn Kout ;

1340 end proc ;

1341

1342

1343 ######### ########## ######### ######## ###########

1344 m a t c o l 2 p o l y := proc (M: : Ma t r i x )

1345 l o c a l i , s , dimi , Po ly ;

1346 g l o b a l d ,K;
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1347

1348 f indKnd (M) :

1349

1350 Poly := 0 ;

1351 dimi := LinearAlgebra :−RowDimension (M) ;

1352 i f whattype ( a [1])<> i n d e x e d then

1353 p r i n t ( ” u n a s i g n t h e mode v a r i a b l e s a [ 1 ] , a [ 2 ] , e t c b e f o r e r u n n i n g m a t c o l 2 p o l y ” ) ;

1354 e l s e

1355

1356 f o r i to dimi do Poly := M[ i , 1 ]∗ ( p r o d u c t ( ( a [ s ] ˆM[ i , 2 ] [ s ]∗ b [ s ] ˆM[ i , 3 ] [ s ] ) /

1357 ( s q r t ( f a c t o r i a l (M[ i , 2 ] [ s ] )∗ f a c t o r i a l (M[ i , 3 ] [ s ] ) ) ) , s = 1 . . K) ) + Poly

1358 end do ;

1359 Poly ;

1360 f i :

1361 end proc ;

1362

1363

1364 ######### ########## ######### ######## ###########

1365 p o l y 2 v e c := proc ( Po ly )

1366 l o c a l i , Indimodes , I n d i , t e r m i n o s p o l y , c u a n t o s , s , W;

1367 g l o b a l d ,K;

1368 ## d e f i n e o p t i c a l modes ##

1369 Ind imodes : = [ seq ( a [ i ] , i = 1 . .K ) ] ;

1370 I n d i : = [ seq ( 0 , i = 1 . .K ) ] ;

1371

1372 i f whattype ( Po ly )= ‘∗ ‘ then

1373 ## t h e p o l y n o m i a l has on ly one te rm ##

1374 ## e x t r a c t t h e c o e f f i c i e n t ##

1375 t e r m i n o s p o l y := c o e f f s ( Poly , Ind imodes ) ;

1376 ## e x t r a c t t h e d e g r e e o f each o p t i c a l mode ##

1377 f o r s to K do

1378 I n d i [ s ] : = d e g r e e ( Poly , [ a [ s ] ] ) :

1379 od :

1380

1381 W:= M at r i x ( [ s q r t ( p r o d u c t ( f a c t o r i a l ( I n d i [m] ) ,m=1 . . K) )∗ t e r m i n o s p o l y , I n d i ] ) ;

1382 W:= s i m p l i f y (W) :

1383 re turn W;

1384

1385 e l i f whattype ( Po ly )= ‘+ ‘ then

1386 ## t h e p o l y n o m i a l has more t h a n one te rm ##

1387 c u a n t o s := nops ( Po ly ) ;

1388 W := M at r i x ( c u a n t o s , 2 ) ;

1389 t e r m i n o s p o l y := op ( Po ly ) ;

1390 f o r i to c u a n t o s do

1391 f o r s to K do
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1392 I n d i [ s ] := d e g r e e ( t e r m i n o s p o l y [ i ] , [ a [ s ] ] ) :

1393 end do ;

1394 W[ i , 1 ] := s q r t ( p r o d u c t ( f a c t o r i a l ( I n d i [m] ) , m = 1 . . K) )∗ c o e f f s (

1395 t e r m i n o s p o l y [ i ] , Ind imodes ) ;

1396 W[ i , 2 ] := I n d i ;

1397 end do ;

1398 W := s i m p l i f y (W) ;

1399 re turn W;

1400 e l s e

1401 p r i n t ( ” i s your p o l y n o m i a l w e l l d e f i n e d i n t h e modes a [ 1 ] , a [ 2 ] , e t c . . ? ” ) ;

1402

1403 f i :

1404 end proc ;

1405

1406

1407 ######### ########## ######### ######## ###########

1408 p o l y 2 m a t c o l := proc ( Po ly )

1409 l o c a l M, i , s , Poly2 , pol , Indimodes , Jndimodes , I n d i , J n d i ;

1410 g l o b a l d ,K;

1411 I n d i : = [ seq ( 0 , i = 1 . .K ) ] :

1412 J n d i : = [ seq ( 0 , i = 1 . .K ) ] :

1413 Ind imodes : = [ seq ( a [ i ] , i = 1 . .K ) ] :

1414 Jnd imodes : = [ seq ( b [ i ] , i = 1 . .K ) ] :

1415

1416 i f whattype ( Po ly )= ‘∗ ‘ then

1417 ## t h e p o l y n o m i a l has on ly one te rm ##

1418 ## e x t r a c t t h e c o e f f i c i e n t ##

1419 p o l := c o e f f s ( Poly , [ op ( Ind imodes ) , op ( Jnd imodes ) ] ) ;

1420 ## e x t r a c t t h e d e g r e e o f each o p t i c a l mode ##

1421 f o r s to K do

1422 I n d i [ s ] : = d e g r e e ( Poly , [ a [ s ] ] ) :

1423 J n d i [ s ] : = d e g r e e ( Poly , [ b [ s ] ] ) :

1424 od :

1425 ## r e c o n s t r u c t t h e ma tc o l o b j e c t ##

1426 M:= Ma t r i x ( [ s q r t ( p r o d u c t ( f a c t o r i a l ( I n d i [m] )∗ f a c t o r i a l ( J n d i [m] ) ,m=1 . . K) )∗

1427 p o l , I n d i , J n d i ] ) ;

1428 M:= s i m p l i f y (M) :

1429 re turn M;

1430

1431 e l i f whattype ( Po ly )= ‘+ ‘ then

1432

1433 Poly2 := c o l l e c t ( Poly , [ op ( Ind imodes ) , op ( Jnd imodes ) ] , ‘ d i s t r i b u t e d ‘ ) ;

1434 p o l := op ( Poly2 ) ;

1435 M := Ma t r i x ( nops ( Poly2 ) , 3 ) ;

1436 f o r i to nops ( Poly2 ) do
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1437 f o r s to K do

1438 I n d i [ s ] := d e g r e e ( p o l [ i ] , [ a [ s ] ] ) ;

1439 J n d i [ s ] := d e g r e e ( p o l [ i ] , [ b [ s ] ] ) ;

1440 end do ;

1441 M[ i , 1 ] := s q r t ( p r o d u c t ( f a c t o r i a l ( I n d i [m] )∗ f a c t o r i a l ( J n d i [m] ) ,

1442 m = 1 . . K) )∗

1443 c o e f f s ( p o l [ i ] , [ op ( Jnd imodes ) , op ( Ind imodes ) ] ) ;

1444 M[ i , 2 ] := I n d i ;

1445 M[ i , 3 ] := J n d i ;

1446 end do ;

1447 M;

1448

1449 e l s e

1450 p r i n t ( ” i s your p o l y n o m i a l w e l l d e f i n e d i n t h e modes a [ 1 ] , a [ 2 ] , b [ 1 ] , b [ 2 ] , e t c ? ” ) :

1451 f i :

1452 end proc ;

1453

1454

1455 ######### ########## ######### ######## ###########

1456 i n d e x s t a t e := proc (M)

1457 l o c a l Out ;

1458 g l o b a l K, d ;

1459 f indKnd (M) :

1460 i f LinearAlgebra :−ColumnDimension (M)=3 then

1461 Out := M at r i x (M) :

1462 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>VectorRow ( x , d ) , Out ) :

1463 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 3 ) ] ( x−>VectorRow ( x , d ) , Out ) :

1464 re turn Out :

1465

1466 e l i f

1467

1468 LinearAlgebra :−ColumnDimension (M)=2 then

1469 Out := M at r i x (M) :

1470 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>VectorRow ( x , d ) , Out ) :

1471 re turn Out :

1472

1473 e l i f

1474

1475 M[ 1 , 1 ] = 0 then

1476 Out := M at r i x (M) :

1477 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( i = 1 ) ] ( x−>VectorRow ( x , d ) , Out ) :

1478 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 1 ) ] ( x−>VectorRow ( x , d ) , Out ) :

1479 Out [ 1 , 1 ] : = 0 :

1480 re turn Out :

1481
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1482

1483 f i :

1484 end proc ;

1485

1486

1487 ######### ########## ######### ######## ###########

1488 modesmatcol := proc (M)

1489 l o c a l i , dimi , Karma ;

1490 g l o b a l d ,K;

1491 dimi := LinearAlgebra :−RowDimension (M) ;

1492 Karma := Ma t r i x ( dimi , 3 ) ;

1493 f o r i to dimi do

1494 Karma [ i , 1 ] := M[ i , 1 ] ;

1495 Karma [ i , 2 ] := VectorModes (M[ i , 2 ] ) ;

1496 Karma [ i , 3 ] := VectorModes (M[ i , 3 ] ) ;

1497 end do ;

1498 re turn Karma ;

1499 end proc ;

1500

1501

1502 ######### ########## ######### ######## ###########

1503 i n d e x v e c := proc (M)

1504 l o c a l Out ;

1505 Out := M at r i x (M) :

1506 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>VectorRow ( x , d ) , Out ) :

1507 re turn Out ;

1508 end proc ;

1509

1510

1511 ######### ########## ######### ######## ###########

1512

1513 modesvec := proc (M)

1514 l o c a l Out ;

1515 Out := M at r i x (M) :

1516 Out := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>VectorModes ( x ) , Out ) :

1517 re turn Out ;

1518 end proc ;

1519

1520

1521 ##########################################################################

1522 ##########################################################################

1523

1524 ############ L i n e a r O p t i c s ##############

1525 ############ Quantum O p e r a t i o n s ##############

1526
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1527 ##########################################################################

1528 ##########################################################################

1529

1530 ## beam s p l i t t e r ##

1531

1532 BS:= proc (M: : Matr ix , m1 , m2)

1533 l o c a l Out ;

1534 g l o b a l K, d ;

1535 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

1536 Out := vecBS (M, m1 , m2 ) ;

1537 K, d := f indKnd ( Out ) ;

1538 p r i n t ( ” d i s now ” , d ) ;

1539 re turn Out ;

1540 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

1541 Out := matcolBS (M, m1 , m2 ) ;

1542 K, d := f indKnd ( Out ) ;

1543 p r i n t ( ” d i s now ” , d ) ;

1544 re turn Out ;

1545 e l s e

1546 p r i n t ( ” Beam S p l i t t e r works wi th VEC and MATCOL” )

1547 p r i n t ( ” a r e t h e y w e l l d e f i n e d ? ” )

1548 end i f ;

1549 end proc ;

1550

1551

1552 ######### ########## ######### ######## ###########

1553 myBS:= proc (M: : Matr ix , m1 , m2 , t , r )

1554 l o c a l Out ;

1555 g l o b a l K, d ;

1556 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

1557 Out := myvecBS (M, m1 , m2 , t , r ) ;

1558 p r i n t ( ” d i s now ” , d ) ;

1559 re turn Out ;

1560 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

1561 p r i n t ( ” d i s now ” , d ) ;

1562 Out := mymatcolBS (M, m1 , m2 , t , r ) ;

1563 K, d := f indKnd ( Out ) ;

1564 re turn Out ;

1565 e l s e

1566 p r i n t ( ” Beam S p l i t t e r works wi th VEC and MATCOL” )

1567 p r i n t ( ” a r e t h e y w e l l d e f i n e d ? ” )

1568 end i f ;

1569 end proc ;

1570

1571
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1572 ######### ########## ######### ######## ###########

1573 PS := proc (M: : Matr ix , m1 : : i n t e g e r , p h i )

1574 l o c a l i , j , Indimodes , Jndimodes , Poly , Poly1 , Poly2 , F i n a l m a t r i x , F i n a l v e c t o r ;

1575 g l o b a l d , K;

1576 f indKnd (M) :

1577

1578 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

1579 Ind imodes := [ ] ;

1580 f o r i to K do Ind imodes := [ op ( Ind imodes ) , a [ i ] ] end do ;

1581 Poly1 := v e c 2 p o l y (M) ;

1582

1583 Poly := subs ( a [m1] = exp ( I ∗ p h i )∗ b [m1 ] , Poly1 ) ;

1584 Poly := subs ( b [m1] = a [m1 ] , Po ly ) ;

1585

1586 Poly := expand (map ( ( x)−>subs ({ a [m1]= exp ( I ∗ p h i )∗ a [m1]} , x ) , Poly1 ) ) :

1587

1588 Poly := c o l l e c t ( Poly , Indimodes , ‘ d i s t r i b u t e d ‘ ) ;

1589 F i n a l v e c t o r := p o l y 2 v e c ( Poly ) ;

1590 re turn F i n a l v e c t o r ;

1591 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

1592 Ind imodes := [ ] ;

1593 f o r i to K do Ind imodes := [ op ( Ind imodes ) , a [ i ] ] end do ;

1594 Jnd imodes := [ ] ;

1595 f o r j to K do Jnd imodes := [ op ( Jnd imodes ) , b [ i ] ] end do ;

1596 Poly1 := m a t c o l 2 p o l y (M) ;

1597 Poly := subs ( a [m1] = exp ( I ∗ p h i )∗ c [m1 ] , Poly1 ) ;

1598 Poly := expand ( subs ( b [m1] = exp(− I ∗ p h i )∗ d [m1 ] , Poly ) ) ;

1599 Poly := subs ( c [m1] = a [m1 ] , Po ly ) ;

1600 Poly := subs ( d [m1] = b [m1 ] , Poly ) ;

1601 Poly2 := c o l l e c t ( Poly , [ op ( Ind imodes ) , op ( Jnd imodes ) ] , ‘ d i s t r i b u t e d ‘ ) ;

1602 F i n a l m a t r i x := p o l y 2 m a t c o l ( Poly2 ) ;

1603 re turn F i n a l m a t r i x ;

1604 e l s e

1605 p r i n t ( ” Th i s PHASE SHIFTER works on ly wi th VEC and MATCOL” ) ;

1606 p r i n t ( ” I s your s t a t e w e l l d e f i n e d ? ” ) ;

1607 end i f ;

1608 end proc ;

1609

1610

1611 ######### ########## ######### ######## ###########

1612 vecBS := proc ( Vec : : Matr ix , m1 , m2)

1613 myvecBS ( Vec , m1 , m2 , t , r ) ;

1614 end proc ;

1615

1616
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1617 ######### ########## ######### ######## ###########

1618 myvecBS := proc ( Vec : : Matr ix , m1 , m2 , t , r )

1619 l o c a l Indimodes , Poly , Poly1 , F i n a l v e c t o r ;

1620 g l o b a l d ,K;

1621 f indKnd ( Vec ) :

1622 ## d e c l a r e o p t i c a l modes

1623 Ind imodes : = [ seq ( a [ i n d i c e ] , i n d i c e = 1 . .K ) ] :

1624 ## g e n e r a t e p o l y n o m i a l o f modes

1625 Poly1 := v e c 2 p o l y ( Vec ) ;

1626 ## s u b s t i t u t e BS t r a n s f o r m a t i o n

1627 Poly := expand (map ( ( x)−>

1628 subs ({ a [m1]= t ∗a [m1] + r ∗a [m2 ] , a [m2]=− r ∗a [m1]+ t ∗a [m2]} , x ) , Poly1 ) ) :

1629 Poly := c o l l e c t ( Poly , Indimodes , ‘ d i s t r i b u t e d ‘ ) ;

1630 ## conver t back to vec o b j e c t

1631 F i n a l v e c t o r := p o l y 2 v e c ( Poly ) ;

1632 K, d := f indKnd ( F i n a l v e c t o r ) :

1633 F i n a l v e c t o r := S t a t e S o r t ( F i n a l v e c t o r ) :

1634 re turn F i n a l v e c t o r ;

1635 end proc :

1636

1637

1638 ######### ########## ######### ######## ###########

1639 matcolBS := proc (M: : Matr ix , m1 , m2)

1640 l o c a l i , Indimodes , Jndimodes , Poly , Poly1 , Poly2 , F i n a l m a t r i x ;

1641 g l o b a l d , K;

1642

1643 Ind imodes : = [ seq ( a [ i ] , i = 1 . .K ) ] :

1644 Jnd imodes : = [ seq ( b [ i ] , i = 1 . .K ) ] :

1645

1646 Poly1 := m a t c o l 2 p o l y (M) ;

1647 Poly := expand (map ( ( x)−>

1648 subs ({ a [m1]= t ∗a [m1] + r ∗a [m2 ] , a [m2]=− r ∗a [m1]+ t ∗a [m2]} , x ) ,

1649 Poly1 ) ) :

1650 Poly2 := expand (map ( ( x)−>

1651 subs ({ b [m1]= conjugate ( t )∗ b [m1] + conjugate ( r )∗ b [m2 ] ,

1652 b [m2]=− conjugate ( r )∗ b [m1]+ conjugate ( t )∗ b [m2]} , x ) ,

1653 Poly ) ) :

1654

1655 Poly2 := c o l l e c t ( Poly2 , [ op ( Ind imodes ) , op ( Jnd imodes ) ] , ‘ d i s t r i b u t e d ‘ ) ;

1656 F i n a l m a t r i x := p o l y 2 m a t c o l ( Poly2 ) ;

1657 re turn F i n a l m a t r i x ;

1658 end proc ;

1659

1660 ######### ########## ######### ######## ###########

1661 mymatcolBS := proc (M: : Matr ix , m1 , m2 , t , r )
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1662 l o c a l i , Indimodes , Jndimodes , Poly , Poly1 , Poly2 , F i n a l m a t r i x ;

1663 g l o b a l d ,K;

1664

1665 Ind imodes : = [ seq ( a [ i ] , i = 1 . .K ) ] :

1666 Jnd imodes : = [ seq ( b [ i ] , i = 1 . .K ) ] :

1667

1668 Poly1 := m a t c o l 2 p o l y (M) ;

1669 Poly := expand (map ( ( x)−>

1670 subs ({ a [m1]= t ∗a [m1] + r ∗a [m2 ] , a [m2]=− r ∗a [m1]+ t ∗a [m2]} , x ) ,

1671 Poly1 ) ) :

1672 Poly2 := expand (map ( ( x)−>

1673 subs ({ b [m1]= conjugate ( t )∗ b [m1] + conjugate ( r )∗ b [m2 ] ,

1674 b [m2]= −conjugate ( r )∗ b [m1]+ conjugate ( t )∗ b [m2]} , x ) ,

1675 Poly ) ) :

1676

1677 Poly2 := c o l l e c t ( Poly2 , [ op ( Ind imodes ) , op ( Jnd imodes ) ] , ‘ d i s t r i b u t e d ‘ ) ;

1678 F i n a l m a t r i x := p o l y 2 m a t c o l ( Poly2 ) ;

1679 re turn F i n a l m a t r i x ;

1680 end proc ;

1681

1682

1683

1684 ######### ########## ######### ######## ###########

1685 B u i l d U n i t a r y := proc ( Lys )

1686 l o c a l t , j , M, Uni ;

1687 g l o b a l K, d ;

1688

1689 i f whattype ( op ( Lys [1]))<> e x p r s e q then

1690 p r i n t ( ” i s your l i s t o f t h e form [ [ 1 , 2 , t , r ] ] or [ [ 1 , 2 , t , r ] , [ 1 , p h i ] ] , e t c ? ” ) ;

1691 e l s e

1692

1693 f o r t to nops ( Lys ) do M[ t ] := Ma t r i x (K, K ) ;

1694 f o r j to K do M[ t ] [ j , j ] := 1 end do ;

1695 i f nops ( Lys [ t ] ) = 2 then

1696 M[ t ] [ Lys [ t ] [ 1 ] , Lys [ t ] [ 1 ] ] := exp ( I ∗Lys [ t ] [ 2 ] )

1697 e l i f nops ( Lys [ t ] ) = 3 then

1698 M[ t ] [ Lys [ t ] [ 1 ] , Lys [ t ] [ 1 ] ] := Lys [ t ] [ 3 ] ;

1699 M[ t ] [ Lys [ t ] [ 2 ] , Lys [ t ] [ 2 ] ] := Lys [ t ] [ 3 ] ;

1700 M[ t ] [ Lys [ t ] [ 2 ] , Lys [ t ] [ 1 ] ] := −s i m p l i f y ( s q r t (1 − Lys [ t ] [ 3 ] ˆ 2 ) ) ;

1701 M[ t ] [ Lys [ t ] [ 1 ] , Lys [ t ] [ 2 ] ] := s i m p l i f y ( s q r t (1 − Lys [ t ] [ 3 ] ˆ 2 ) ) ;

1702 e l i f nops ( Lys [ t ] ) = 4 then

1703 M[ t ] [ Lys [ t ] [ 1 ] , Lys [ t ] [ 1 ] ] := Lys [ t ] [ 3 ] ;

1704 M[ t ] [ Lys [ t ] [ 2 ] , Lys [ t ] [ 2 ] ] := Lys [ t ] [ 3 ] ;

1705 M[ t ] [ Lys [ t ] [ 2 ] , Lys [ t ] [ 1 ] ] := −Lys [ t ] [ 4 ] ;

1706 M[ t ] [ Lys [ t ] [ 1 ] , Lys [ t ] [ 2 ] ] := Lys [ t ] [ 4 ] ;

256



.3 Maple Code

1707 e l s e

1708 end i f ;

1709 end do ;

1710 Uni := LinearAlgebra :− I d e n t i t y M a t r i x (K, K ) ;

1711 f o r j to nops ( Lys ) do Uni := LinearAlgebra :−Mult ip ly ( Uni ,M[ j ] ) end do ;

1712 re turn Uni ;

1713 f i :

1714 end proc ;

1715

1716

1717 ######### ########## ######### ######## ###########

1718 U n i t a r y E v o l u t i o n := proc (U, M)

1719 l o c a l i , c , e , f , g , h ,

1720 Po , Uli ,

1721 Indimodes , Jndimodes ,

1722 Modes , Modesket , Modesbra , F i n a l v e c t o r ;

1723 g l o b a l K, d ;

1724

1725

1726 ##################################################

1727 #################### f o r VEC ##################

1728 ##################################################

1729

1730

1731 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

1732

1733 Po := v e c 2 p o l y (M) ;

1734

1735 Ind imodes : = [ seq ( a [ i ] , i = 1 . .K ) ] :

1736

1737 Modes := V ec t o r (K ) :

1738 f o r i from 1 to K do

1739 Modes [ i ] := e [ i ] :

1740 end do :

1741

1742 c := LinearAlgebra :−Mult ip ly (U, Modes ) :

1743

1744 f o r i from 1 to K do

1745 Po := subs ( a [ i ] = c [ i ] , Po ) ;

1746 od :

1747

1748 f o r i from 1 to K do

1749 Po := subs ( e [ i ]= a [ i ] , Po ) ;

1750 od :

1751
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1752 Po := s i m p l i f y ( expand ( Po ) ) ;

1753 Po := c o l l e c t ( Po , Indimodes , ‘ d i s t r i b u t e d ‘ ) ;

1754 F i n a l v e c t o r := p o l y 2 v e c ( Po ) ;

1755 f indKnd ( F i n a l v e c t o r ) ;

1756 p r i n t ( ” d i s now ” , d ) ;

1757 re turn F i n a l v e c t o r ;

1758

1759 ##################################################

1760 #################### f o r MATCOL ##################

1761 ##################################################

1762

1763 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

1764

1765 U l i := Ma t r i x (U ) :

1766 Po := m a t c o l 2 p o l y (M) ;

1767

1768 Ind imodes : = [ seq ( a [ i ] , i = 1 . .K ) ] :

1769 Jnd imodes : = [ seq ( b [ i ] , i = 1 . .K ) ] :

1770

1771 ## c r e a t e v e c t o r o f modes ##

1772 Modesket := Ve c t o r (K ) :

1773 Modesbra := Ve c t o r (K ) :

1774

1775 f o r i from 1 to K do

1776 Modesket [ i ] := e [ i ] :

1777 Modesbra [ i ] := f [ i ] :

1778 end do :

1779

1780 ### a p p l y u n i t a r y to modes ###

1781 g := LinearAlgebra :−Mult ip ly ( Ul i , Modesket ) ;

1782 ## we t a k e t h e complex conjugate ( to conjugate phases , e t c )

1783 ## however we t r a n s p o s e aga in , s i n c e i t ’ s a p p l i e d to t h e

1784 ## v e c t o r o f modes ( and n o t to t h e conjugate of i t )

1785 h := LinearAlgebra :−Mult ip ly (

1786 LinearAlgebra :−Transpose (

1787 LinearAlgebra :−H e r m i t i a n T r a n s p o s e ( Ul i , ‘ i n p l a c e ‘= f a l s e ) ) , Modesbra ) ;

1788

1789 ## s u b s t i t u t e t r a n s f o r m e d modes i n P o l y n o m i a l ##

1790 f o r i from 1 to K do

1791 Po := subs ( a [ i ] = g [ i ] , Po ) ;

1792 Po := subs ( b [ i ] = h [ i ] , Po ) ;

1793 od :

1794

1795 ## s u b s t i t u t e back to o r i g i n a l names ##

1796 f o r i from 1 to K do
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1797 Po := subs ( e [ i ]= a [ i ] , Po ) ;

1798 Po := subs ( f [ i ]= b [ i ] , Po ) ;

1799 od :

1800

1801 Po := s i m p l i f y ( expand ( Po ) ) :

1802

1803 Po := c o l l e c t ( Po , [ op ( Ind imodes ) , op ( Jnd imodes ) ] , ‘ d i s t r i b u t e d ‘ ) :

1804

1805

1806 F i n a l v e c t o r := p o l y 2 m a t c o l ( Po ) ;

1807 f indKnd ( F i n a l v e c t o r ) ;

1808 p r i n t ( ” d i s now ” , d ) ;

1809

1810 re turn F i n a l v e c t o r ;

1811

1812 e l s e

1813 p r i n t ( ” t h i s p r o c e d u r e works so f a r f o r VEC and MATCOL” )

1814 end i f ;

1815 end proc :

1816

1817

1818

1819 ##########################################################################

1820 ##########################################################################

1821

1822 ############ ##############

1823 ############ ## Measurements ## ##############

1824

1825 ##########################################################################

1826 ##########################################################################

1827

1828

1829 APD:= proc ( r e s u l t , e t a , Nrphot ) l o c a l i ,

1830 POVM;

1831

1832 i f i s ( Nrphot , i n t e g e r )= f a l s e then

1833 p r i n t ( ” i s t h e number o f p h o t o n s an i n t e g e r ? ” ) ;

1834 e l s e

1835 f i ;

1836 i f r e s u l t =0 then

1837 POVM:= M at r i x ( Nrphot + 1 , 3 ) :

1838 f o r i from 1 to Nrphot +1 do

1839 POVM[ i , 1 ] : = e t a ˆ ( 2 ∗ ( i −1) ) :

1840 POVM[ i , 2 ] : = [ i −1]:

1841 POVM[ i , 3 ] : = [ i −1]:
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1842 od :

1843 re turn POVM;

1844

1845 e l i f r e s u l t =1 then

1846

1847 POVM:= M at r i x ( Nrphot , 3 ) :

1848 f o r i from 1 to Nrphot do

1849 POVM[ i ,1] :=1− e t a ˆ ( 2∗ i ) :

1850 POVM[ i , 2 ] : = [ i ] :

1851 POVM[ i , 3 ] : = [ i ] :

1852 od :

1853 re turn POVM;

1854

1855 e l s e

1856 p r i n t ( ” i s your r e s u l t 0 p h o t o n s or any p h o t o n s ? ” ) ;

1857 f i :

1858

1859 end proc :

1860

1861

1862 ######### ########## ######### ######## ###########

1863

1864 P r o j e c t := proc (M1, L , M2)

1865 l o c a l p r o j e c t e u r , rho ;

1866 i f LinearAlgebra :−ColumnDimension (M1) = 2 and

1867 LinearAlgebra :−ColumnDimension (M2 ) = 2 and M2[ 1 , 1 ] <> 0 then

1868 P r o j e c t v e c v e c (M1, L , M2)

1869 e l i f LinearAlgebra :−ColumnDimension (M1) = 2 and

1870 LinearAlgebra :−ColumnDimension (M2) = 3 and M2[ 1 , 1 ] <> 0 then

1871 p r o j e c t e u r := Quantavo :− v e c 2 m a t c o l (M1 ) ;

1872 P r o j e c t m a t c o l ( p r o j e c t e u r , L , M2 ) ;

1873 e l i f LinearAlgebra :−ColumnDimension (M1) = 3 and

1874 LinearAlgebra :−ColumnDimension (M2) = 2 and M2[ 1 , 1 ] <> 0 then

1875 rho := Quantavo :− v e c 2 m a t c o l (M2 ) ;

1876 P r o j e c t m a t c o l (M1, L , rho ) ;

1877 e l i f LinearAlgebra :−ColumnDimension (M1) = 3 and

1878 LinearAlgebra :−ColumnDimension (M2) = 3 and M2[ 1 , 1 ] <> 0 then

1879 P r o j e c t m a t c o l (M1, L , M2)

1880 e l s e

1881 p r i n t ( ” t h i s p r o c e d u r e t a k e s ( vec / matcol , l i s t , vec / ma tco l ) a s i n p u t s ” ) ;

1882 p r i n t ( ” a r e your s t a t e s w e l l d e f i n e d ? ” ) ;

1883 end i f ;

1884 end proc ;

1885

1886 ######### ########## ######### ######## ###########
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1887 P r o j e c t v e c v e c := proc ( p s i : : Mat r ix , L ,V : : Ma t r i x )

1888 l o c a l Ket , W, Outtemp , p r o j e c t o r , equa l , s , i , j ;

1889 p r o j e c t o r := Quantavo :− v e c 2 m a t c o l ( p s i ) ;

1890 W := [ ] ;

1891

1892 f o r i to LinearAlgebra :−RowDimension ( p r o j e c t o r ) do

1893 f o r j to LinearAlgebra :−RowDimension (V) do

1894 e q u a l := 1 ;

1895

1896 f o r s to nops ( L ) do

1897 i f p r o j e c t o r [ i , 3 ] [ s ] = V[ j , 2 ] [ L [ s ] ] then

1898 e l s e

1899 e q u a l := 0 ;

1900 break ;

1901 end i f ;

1902 end do ;

1903

1904 i f e q u a l = 1 then

1905 Ket := V[ j , 2 ] ;

1906

1907 f o r s to nops ( L ) do

1908 Ket := subsop ( L [ s ] = p r o j e c t o r [ i , 2 ] [ s ] , Ket )

1909 end do ;

1910

1911 W: = [ op (W) , [ p r o j e c t o r [ i , 1 ]∗V[ j , 1 ] , Ket ] ] ;

1912

1913 e l s e

1914 end i f ;

1915 end do ;

1916 end do ;

1917 Outtemp := conver t (W, Ma t r i x ) ;

1918

1919 Outtemp := S t a t e S o r t ( Outtemp ) :

1920 re turn Outtemp ;

1921 end proc :

1922

1923

1924 ######### ########## ######### ######## ###########

1925 P r o j e c t m a t c o l := proc ( p s i : : Mat r ix , L , rho : : M a t r i x )

1926

1927 l o c a l Ket , equa l ,W,

1928 Outtemp , p s i b a r , Out ,

1929 s , i , j ;

1930

1931 W: = [ ] :
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1932 f o r i from 1 to LinearAlgebra :−RowDimension ( p s i ) do

1933 f o r j from 1 to LinearAlgebra :−RowDimension ( rho ) do

1934

1935 #### compare b r a from POVM and k e t from d e n s i t y op . ####

1936 e q u a l : = 1 :

1937 f o r s from 1 to nops ( L ) do

1938 i f p s i [ i , 3 ] [ s ]= rho [ j , 2 ] [ L [ s ] ] then

1939 # t h e y a r e t h e same ##

1940 e l s e

1941 e q u a l : = 0 :

1942 break ;

1943 f i :

1944 od :

1945

1946

1947 i f e q u a l = 1 then

1948 Ket := rho [ j , 2 ] :

1949

1950 f o r s from 1 to nops ( L ) do

1951 Ket := subsop ( L [ s ]= p s i [ i , 2 ] [ s ] , Ket ) :

1952 od :

1953

1954 W: = [ op (W) , [ p s i [ i , 1 ]∗ rho [ j , 1 ] , Ket , rho [ j , 3 ] ] ] ;

1955

1956 e l s e

1957 f i :

1958

1959 od :

1960 od :

1961

1962 Outtemp := conver t (W, Ma t r i x ) :

1963 p s i b a r := S t a t e C o m p l e x C o n j u g a t e ( p s i ) :

1964

1965 W: = [ ] :

1966 f o r i from 1 to LinearAlgebra :−RowDimension ( p s i b a r ) do

1967 f o r j from 1 to LinearAlgebra :−RowDimension ( Outtemp ) do

1968

1969 #### compare k e t from a d j o i n t POVM and b r a from d e n s i t y op . ####

1970 e q u a l : = 1 :

1971 f o r s from 1 to nops ( L ) do

1972 i f p s i b a r [ i , 2 ] [ s ]= Outtemp [ j , 3 ] [ L [ s ] ] then

1973 # t h e y a r e t h e same ##

1974 e l s e

1975 e q u a l : = 0 :

1976 break ;
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1977 f i :

1978 od :

1979

1980

1981 i f e q u a l = 1 then

1982 Ket := Outtemp [ j , 3 ] :

1983

1984 f o r s from 1 to nops ( L ) do

1985 Ket := subsop ( L [ s ]= p s i b a r [ i , 3 ] [ s ] , Ket ) :

1986 od :

1987 W: = [ op (W) , [ p s i b a r [ i , 1 ]∗ Outtemp [ j , 1 ] , Outtemp [ j , 2 ] , Ket ] ] ;

1988

1989

1990 e l s e

1991 f i :

1992

1993 od :

1994 od :

1995

1996 i f nops (W) = 0 then

1997 p r i n t ( ” t h e r e i s no o v e r l a p , your s t a t e i s z e r o a f t e r t h i s measurement ” ) :

1998 e l s e

1999 Out := conver t (W, Ma t r i x ) :

2000 #### S o r t and add r e p e a t e d e n t r i e s ####

2001 Out := S t a t e S o r t ( Out ) ;

2002 re turn Out ;

2003 f i

2004 end proc :

2005

2006

2007 ######### ########## ######### ######## ###########

2008 POVMresult := proc ( p s i : : Mat r ix , L , rho : : Ma t r i x )

2009

2010 l o c a l Ket , equa l ,W,

2011 Outtemp , Out ,

2012 T o d e l e t e , same , Lordered ,

2013 s , i , j ;

2014

2015 f indKnd ( rho ) :

2016

2017 #######################################

2018 ##### f o r POVM and d e n s i t y m a t r i x #####

2019 #######################################

2020 #######################################

2021
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2022 i f LinearAlgebra :−ColumnDimension ( p s i )=3 and

2023 LinearAlgebra :−ColumnDimension ( rho )=3 then

2024 W: = [ ] :

2025 f o r i from 1 to LinearAlgebra :−RowDimension ( p s i ) do

2026 f o r j from 1 to LinearAlgebra :−RowDimension ( rho ) do

2027

2028 #### compare b r a from POVM and k e t from d e n s i t y op . ####

2029 e q u a l : = 1 :

2030 f o r s from 1 to nops ( L ) do

2031 i f p s i [ i , 3 ] [ s ]= rho [ j , 2 ] [ L [ s ] ] then

2032 # t h e y a r e t h e same ##

2033 e l s e

2034 e q u a l : = 0 :

2035 break ;

2036 f i :

2037 od :

2038

2039

2040 i f e q u a l = 1 then

2041 Ket := rho [ j , 2 ] :

2042

2043 f o r s from 1 to nops ( L ) do

2044 Ket := subsop ( L [ s ]= p s i [ i , 2 ] [ s ] , Ket ) :

2045 od :

2046

2047 W: = [ op (W) , [ p s i [ i , 1 ]∗ rho [ j , 1 ] , Ket , rho [ j , 3 ] ] ] ;

2048

2049 e l s e

2050 f i :

2051

2052 od :

2053 od :

2054

2055

2056 Outtemp := Trim ( conver t (W, Ma t r i x ) ) :

2057

2058

2059 #### i n c a s e no s t a t e i s l e f t ####

2060 i f Outtemp=NULL or Dimensions ( Outtemp ) [ 1 ] = 0 then

2061 p r i n t ( ” No s t a t e i s l e f t ” ) ;

2062 e l s e

2063

2064

2065 #### t r a c i n g o u t measured modes ####

2066
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2067 T o d e l e t e : = [ ] :

2068 f o r i from 1 to LinearAlgebra :−RowDimension ( Outtemp ) do

2069 same : = 0 :

2070 f o r s from 1 to nops ( L ) whi le same=0 do

2071 i f Outtemp [ i , 2 ] [ L [ s ] ] = Outtemp [ i , 3 ] [ L [ s ] ] then

2072 e l s e

2073 same : = 1 :

2074 f i :

2075 od :

2076

2077 i f same=0 then

2078 e l s e

2079 T o d e l e t e : = [ op ( T o d e l e t e ) , i ] :

2080 f i :

2081

2082 od :

2083

2084 Outtemp := LinearAlgebra :−DeleteRow ( Outtemp , T o d e l e t e ) ;

2085

2086

2087

2088 ##### d e l e t e mode e l e m e n t s #####

2089 L o r d e r e d := s o r t ( L , ‘ > ‘ ) ;

2090 f o r s from 1 to nops ( L ) do

2091 Outtemp := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>subsop ( L o r d e r e d [ s ]=NULL, x ) , Outtemp ) ;

2092 Outtemp := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 3 ) ] ( x−>subsop ( L o r d e r e d [ s ]=NULL, x ) , Outtemp ) ;

2093 od ;

2094

2095 ##### s o r t ( which w i l l a l s o add r e p e a t e d e l e m e n t s ) ####

2096

2097

2098 Outtemp := S t a t e S o r t ( Outtemp ) :

2099 re turn Outtemp ;

2100 f i :

2101

2102 ###################################

2103 ##### f o r POVM and pure s t a t e #####

2104 ###################################

2105 ###################################

2106

2107 e l i f LinearAlgebra :−ColumnDimension ( p s i )=3 and

2108 LinearAlgebra :−ColumnDimension ( rho )=2 then

2109

2110 Out := v e c 2 m a t c o l ( rho ) :

2111
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2112 W: = [ ] :

2113 f o r i from 1 to LinearAlgebra :−RowDimension ( p s i ) do

2114 f o r j from 1 to LinearAlgebra :−RowDimension ( Out ) do

2115

2116 #### compare b r a from POVM and k e t from d e n s i t y op . ####

2117 e q u a l : = 1 :

2118 f o r s from 1 to nops ( L ) do

2119 i f p s i [ i , 3 ] [ s ]= Out [ j , 2 ] [ L [ s ] ] then

2120 # t h e y a r e t h e same ##

2121 e l s e

2122 e q u a l : = 0 :

2123 break ;

2124 f i :

2125 od :

2126

2127

2128 i f e q u a l = 1 then

2129 Ket := Out [ j , 2 ] :

2130

2131 f o r s from 1 to nops ( L ) do

2132 Ket := subsop ( L [ s ]= p s i [ i , 2 ] [ s ] , Ket ) :

2133 od :

2134

2135 W: = [ op (W) , [ p s i [ i , 1 ]∗ Out [ j , 1 ] , Ket , Out [ j , 3 ] ] ] ;

2136

2137 e l s e

2138 f i :

2139

2140 od :

2141 od :

2142

2143 Outtemp := Trim ( conver t (W, Ma t r i x ) ) :

2144

2145

2146 #### i n c a s e no s t a t e i s l e f t ####

2147 i f Outtemp=NULL or Dimensions ( Outtemp ) [ 1 ] = 0 then

2148 p r i n t ( ” No s t a t e i s l e f t ” ) ;

2149 e l s e

2150

2151

2152

2153 #### t r a c i n g o u t measured modes ####

2154

2155 T o d e l e t e : = [ ] :

2156 f o r i from 1 to LinearAlgebra :−RowDimension ( Outtemp ) do
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2157 same : = 0 :

2158 f o r s from 1 to nops ( L ) whi le same=0 do

2159 i f Outtemp [ i , 2 ] [ L [ s ] ] = Outtemp [ i , 3 ] [ L [ s ] ] then

2160 e l s e

2161 same : = 1 :

2162 f i :

2163 od :

2164

2165 i f same=0 then

2166 e l s e

2167 T o d e l e t e : = [ op ( T o d e l e t e ) , i ] :

2168 f i :

2169

2170 od :

2171

2172 Outtemp := LinearAlgebra :−DeleteRow ( Outtemp , T o d e l e t e ) ;

2173

2174

2175

2176 ##### d e l e t e mode e l e m e n t s #####

2177 L o r d e r e d := s o r t ( L , ‘ > ‘ ) ;

2178 f o r s from 1 to nops ( L ) do

2179 Outtemp := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 2 ) ] ( x−>subsop ( L o r d e r e d [ s ]=NULL, x ) , Outtemp ) ;

2180 Outtemp := LinearAlgebra :−Map [ ( i , j )−>eva lb ( j = 3 ) ] ( x−>subsop ( L o r d e r e d [ s ]=NULL, x ) , Outtemp ) ;

2181 od ;

2182

2183 ##### s o r t ( which w i l l a l s o add r e p e a t e d e l e m e n t s ) ####

2184 f indKnd ( Outtemp ) :

2185 Outtemp := S t a t e S o r t ( Outtemp ) :

2186

2187 re turn Outtemp ;

2188 f i :

2189

2190 e l s e

2191 p r i n t ( ” a r e t h e POVM and S t a t e w e l l d e f i n e d ? ” ) ;

2192 p r i n t ( ” t h i s p r o c e d u r e h a n d l e s POVM ( ma tco l ) , S t a t e ( ma tc o l / vec ) ” ) ;

2193 f i

2194

2195

2196 end proc :

2197

2198

2199 ### P r o b a b i l i t y

2200

2201 ######### ########## ######### ######## ###########
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2202 P r o b a b i l i t y := proc ( p s i : : Mat r ix , L , rho : : Ma t r i x )

2203

2204 l o c a l Ket , equa l ,W, POV, Out ,

2205 Sumdiag , Prob ,

2206 s , i , j ;

2207

2208 ####### choose vec / m a tc o l and conver t i f needed ####

2209

2210 i f p s i [ 1 , 1 ] = 0 or rho [ 1 , 1 ] = 0 then

2211 p r i n t ( ” t h i s p r o c e d u r e a c c e p t s VEC/MATCOL as i n p u t , i s your s t a t e w e l l d e f i n e d ? ” )

2212

2213 ##### f o r vec POVM and vec s t a t e #####

2214 e l i f LinearAlgebra :−ColumnDimension ( p s i )=2 and

2215 LinearAlgebra :−ColumnDimension ( rho )=2 then

2216 POV:= v e c 2 m a t c o l ( p s i ) ;

2217 Out := v e c 2 m a t c o l ( rho ) :

2218

2219 ##### f o r vec POVM and vec s t a t e #####

2220 e l i f LinearAlgebra :−ColumnDimension ( p s i )=2 and

2221 LinearAlgebra :−ColumnDimension ( rho )=3 then

2222 POV:= v e c 2 m a t c o l ( p s i ) ;

2223 Out := M at r i x ( rho ) :

2224

2225 ##### f o r POVM and pure s t a t e #####

2226 e l i f LinearAlgebra :−ColumnDimension ( p s i )=3 and

2227 LinearAlgebra :−ColumnDimension ( rho )=2 then

2228 POV:= Mat r i x ( p s i ) :

2229 Out := v e c 2 m a t c o l ( rho ) :

2230

2231 ##### f o r POVM and d e n s i t y m a t r i x #####

2232 e l i f LinearAlgebra :−ColumnDimension ( p s i )=3 and

2233 LinearAlgebra :−ColumnDimension ( rho )=3 then

2234 POV:= Mat r i x ( p s i ) :

2235 Out := M at r i x ( rho ) :

2236 e l s e

2237 p r i n t ( ” a r e t h e POVM and S t a t e w e l l d e f i n e d ? ” ) ;

2238 p r i n t ( ” t h i s p r o c e d u r e h a n d l e s POVM ( ma tco l ) , S t a t e ( ma tc o l / vec ) ” ) ;

2239 f i :

2240 ###########################################################

2241

2242 W: = [ ] :

2243 f o r i from 1 to LinearAlgebra :−RowDimension (POV) do

2244 f o r j from 1 to LinearAlgebra :−RowDimension ( Out ) do

2245

2246 #### compare b r a from POVM and k e t from d e n s i t y op . ####
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2247 e q u a l : = 1 :

2248 f o r s from 1 to nops ( L ) do

2249 i f POV[ i , 3 ] [ s ]= Out [ j , 2 ] [ L [ s ] ] then

2250 # t h e y a r e t h e same ##

2251 e l s e

2252 e q u a l : = 0 : # t h e y a r e d i f f e r e n t #

2253 break ;

2254 f i :

2255 od :

2256

2257

2258 i f e q u a l = 1 then

2259 Ket := Out [ j , 2 ] :

2260

2261 f o r s from 1 to nops ( L ) do

2262 Ket := subsop ( L [ s ]=POV[ i , 2 ] [ s ] , Ket ) :

2263 od :

2264

2265 W: = [ op (W) , [ POV[ i , 1 ]∗ Out [ j , 1 ] , Ket , Out [ j , 3 ] ] ] ;

2266

2267 e l s e

2268 f i :

2269

2270 od :

2271 od :

2272

2273 #### Tr ( P i . rho ) t a k i n g t h e t r a c e ####

2274

2275 Sumdiag : = 0 :

2276 f o r i from 1 to nops (W) do

2277

2278 i f W[ i ] [ 2 ] =W[ i ] [ 3 ] then

2279 Sumdiag := Sumdiag+W[ i ] [ 1 ] ;

2280 e l s e

2281 f i :

2282 od :

2283

2284 ##### f i n a l prob ####

2285

2286 Prob := Sumdiag / S t a t e T r a c e ( Out ) ; #make s u r e s t a t e i s n o r m a l i z e d

2287

2288

2289 i f Prob<>1 then

2290 p r i n t ( ” remember to check t h a t your POVM e l e m e n t s a r e P o s i t i v e ” ) ;

2291 p r i n t ( ” and t h a t t h e y add−up to t h e I d e n t i t y ” ) ;
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2292 e l s e

2293 f i :

2294

2295 re turn Prob ;

2296

2297 end proc :

2298

2299 ##########################################################################

2300 ##########################################################################

2301

2302 ############ ##############

2303 ############ ## D i s p l a y P r o c e d u r e s ## ##############

2304

2305 ##########################################################################

2306 ##########################################################################

2307

2308 Dket := proc ( I n d i )

2309 l o c a l s , k e t ;

2310 g l o b a l d , K;

2311 k e t := ‘ | ‘ ;

2312 f o r s to K do k e t := c a t ( ke t , I n d i [ s ] ) end do ;

2313 k e t := c a t ( ke t , ‘> ‘ ) ;

2314 k e t ;

2315 end proc ;

2316

2317

2318 ######### ########## ######### ######## ###########

2319 Dbra := proc ( J n d i )

2320 l o c a l s , b r a ;

2321 g l o b a l d , K;

2322 b r a := ‘< ‘;

2323 f o r s to K do b r a := c a t ( bra , J n d i [ s ] ) end do ;

2324 b r a := c a t ( bra , ‘ | ‘ ) ;

2325 b r a ;

2326 end proc ;

2327

2328

2329 ######### ########## ######### ######## ###########

2330 Dbrake t := proc ( I n d i , J n d i )

2331 l o c a l s , b r a k e t ;

2332 g l o b a l d , K;

2333 b r a k e t := ‘ | ‘ ;

2334 f o r s to K do b r a k e t := c a t ( b r a k e t , I n d i [ s ] ) end do ;

2335 b r a k e t := c a t ( b r a k e t , ‘>< ‘);

2336 f o r s to K do b r a k e t := c a t ( b r a k e t , J n d i [ s ] ) end do ;
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2337 b r a k e t := c a t ( b r a k e t , ‘ | ‘ ) ;

2338 b r a k e t ;

2339 end proc ;

2340

2341

2342 ######### ########## ######### ######## ###########

2343 D s t a t e := proc (M)

2344 l o c a l Sa ;

2345 ## f i n d K and d ##

2346 f indKnd (M) :

2347 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

2348 Sa := Dvec (M) ;

2349 re turn Sa ;

2350 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

2351 Sa := Dmatcol (M) ;

2352 re turn Sa ;

2353 e l i f M[ 1 , 1 ] = 0 and LinearAlgebra :−ColumnDimension (M) =

2354 LinearAlgebra :−RowDimension (M) then

2355 Sa := Dmat (M) ;

2356 re turn Sa ;

2357 e l s e

2358 p r i n t ( ” i s your o b j e c t VEC, MAT or MATCOL w e l l d e f i n e d ? ” )

2359 end i f ;

2360 end proc ;

2361

2362

2363 ######### ########## ######### ######## ###########

2364 Dvec := proc (V : : Ma t r i x )

2365 l o c a l dimi , i , Y;

2366 g l o b a l d , K;

2367 dimi := LinearAlgebra :−RowDimension (V ) ;

2368 i n t e r f a c e ( r t a b l e s i z e = dimi + 1 0 ) ;

2369 Y := M at r i x ( dimi , 3 ) ;

2370 f o r i to dimi do Y[ i , 1 ] := V[ i , 1 ] ;

2371 Y[ i , 2 ] := ‘ ‘ ;

2372 Y[ i , 3 ] := Dket (V[ i , 2 ] ) ;

2373 end do ;

2374 Y;

2375 end proc ;

2376

2377

2378 ######### ########## ######### ######## ###########

2379 Dmat := proc (M: : Ma t r i x )

2380 l o c a l Moe , i , j , d imi ;

2381 dimi := LinearAlgebra :−RowDimension (M) ;
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2382 i n t e r f a c e ( r t a b l e s i z e = dimi + 4 0 ) ;

2383 Moe := Ma t r i x ( dimi , d imi ) ;

2384 f o r i from 2 to dimi do Moe [ 1 , i ] := Dbra (M[ 1 , i ] ) ;

2385 Moe[ i , 1 ] := Dket (M[ i , 1 ] ) ;

2386 end do ;

2387 f o r i from 2 to dimi do f o r j from 2 to dimi do Moe[ i , j ] := M[ i , j ]

2388 end do ;

2389 end do ;

2390 Moe ;

2391 end proc ;

2392

2393

2394 ######### ########## ######### ######## ###########

2395 Dmatcol := proc (M: : Ma t r i x )

2396 l o c a l i , dimi , Y;

2397 dimi := LinearAlgebra :−RowDimension (M) ;

2398 i n t e r f a c e ( r t a b l e s i z e = dimi + 1 0 ) ;

2399 Y := M at r i x ( dimi , 3 ) ;

2400 f o r i to dimi do Y[ i , 1 ] := M[ i , 1 ] ;

2401 Y[ i , 2 ] := ‘ ‘ ;

2402 Y[ i , 3 ] := Dbrake t (M[ i , 2 ] , M[ i , 3 ] ) ;

2403 end do ;

2404 Y;

2405 end proc ;

2406

2407 ######### ########## ######### ######## ###########

2408 ############ ##############

2409 ############ ## P l o t i n g P r o c e d u r e s ## ##############

2410

2411 ######### ########## ######### ######## ###########

2412 P l o t S t a t e := proc (M, h , H)

2413 l o c a l i , L , V1 , WW, Mat ;

2414 g l o b a l d ;

2415 f indKnd (M) :

2416 i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 2 then

2417 V1 := Ma t r i x (M) ;

2418 WW := NULL;

2419 f o r i to LinearAlgebra :−RowDimension ( V1 ) do WW := WW,

2420 [ VectorRow ( V1 [ i , 2 ] , d ) , V1 [ i , 1 ] ]

2421 end do ;

2422 re turn h i s t o ( [WW] ) ;

2423 e l i f M[ 1 , 1 ] <> 0 and LinearAlgebra :−ColumnDimension (M) = 3 then

2424 Mat := i n d e x s t a t e (M) ;

2425 L := NULL;

2426 f o r i to LinearAlgebra :−RowDimension ( Mat ) do

272



.3 Maple Code

2427 L := L , geom3d:−draw ( b a r r a ( Mat , i , h , H) )

2428 end do ;

2429 re turn p l o t s :− d i s p l a y 3 d ({L} , axe s = boxed ) ;

2430 e l i f M[ 1 , 1 ] = 0 then

2431 Mat := M at r i x (M) ;

2432 Mat := mat2matco l ( Mat ) ;

2433 Mat := i n d e x s t a t e ( Mat ) ;

2434 L := NULL;

2435 f o r i to LinearAlgebra :−RowDimension ( Mat ) do L := L ,

2436 geom3d:−draw ( b a r r a ( Mat , i , h , H) )

2437 end do ;

2438 re turn p l o t s :− d i s p l a y 3 d ({L} , axe s = boxed ) ;

2439 e l s e

2440 p r i n t ( ” i s your mat / m a t co l w e l l d e f i n e d ? a r e a m p l i t u d e s p o s i t i v e numbers ? ” )

2441 end i f ;

2442 end proc ;

2443

2444

2445

2446 ######### ########## ######### ######## ###########

2447 b a r r a := proc (M, i , h , H)

2448 l o c a l a lpha , be t a , gama , d e l t a ;

2449 geom3d:−p o i n t ( a lpha , M[ i , 2 ] + h , M[ i , 3 ] − h , 0 ) ,

2450 geom3d:−p o i n t ( be t a , M[ i , 2 ] + h , M[ i , 3 ] + h , 0 ) ,

2451 geom3d:−p o i n t ( gama , M[ i , 2 ] − h , M[ i , 3 ] − h , 0 ) ,

2452 geom3d:−p o i n t ( d e l t a , M[ i , 2 ] + h , M[ i , 3 ] − h , H∗M[ i , 1 ] ) ;

2453 geom3d:−dsegment ( d1 , [ a lpha , b e t a ] ) , geom3d:−dsegment ( d2 , [ a lpha , gama ] ) ,

2454 geom3d:−dsegment ( d3 , [ a lpha , d e l t a ] ) ;

2455 re turn geom3d:− p a r a l l e l e p i p e d ( pp , [ d1 , d2 , d3 ] ) ;

2456 end proc ;

2457

2458

2459 ######### ########## ######### ######## ###########

2460 h i s t o := proc ( L : : l i s t )

2461 l o c a l k , poly , S ;

2462 S := NULL;

2463 f o r k i n L do po ly := [ [ k [ 1 ] , 0 ] , [ k [ 1 ] + 1 , 0 ] , [ k [ 1 ] + 1 , k [ 2 ] ] ,

2464 [ k [ 1 ] , k [ 2 ] ] ] ;

2465 S := S ,

2466 p l o t s [ p o l y g o n p l o t ] ( poly , c o l o r = COLOR(RGB, 0 . 1 9 6 0 , 0 . 6 0 0 0 , 0 . 8 0 0 0 ) ) ;

2467 end do ;

2468 p l o t s [ d i s p l a y ] ({ S } ) ;

2469 end proc ;

2470

2471 ######### ########## ######### ######## ###########
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2472 ######### ########## ######### ######## ###########

2473 end module :

2474 ######### ########## ######### ######## ###########

2475 ######### ########## ######### ######## ###########
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